

Ontology Management
Semantic Web, Semantic Web Services, and

Business Applications

SEMANTIC WEB AND BEYOND
Computing for Human Experience

Series Editors:

Ramesh Jain Amit Sheth

University of California, Irvine University of Georgia
http://ngs.ics.uci.edu/ http://lsdis.cs.uga.edu/~amit

As computing becomes ubiquitous and pervasive, computing is increasingly becoming
an extension of human, modifying or enhancing human experience. Today's car reacts
to human perception of danger with a series of computers participating in how to handle
the vehicle for human command and environmental conditions. Proliferating sensors
help with observations, decision making as well as sensory modifications. The emergent
semantic web will lead to machine understanding of data and help exploit
heterogeneous, multi-source digital media. Emerging applications in situation
monitoring and entertainment applications are resulting in development of experiential
environments.

SEMANTIC WEB AND BEYOND
Computing for Human Experience

addresses the following goals:
 brings together forward looking research and technology that will shape our

world more intimately than ever before as computing becomes an extension of
human experience;

 covers all aspects of computing that is very closely tied to human perception,
understanding and experience;

 brings together computing that deal with semantics, perception and experience;
 serves as the platform for exchange of both practical technologies and far

reaching research.
Additional information about this series can be obtained from

http://www.springer.com ISSN: 1559-7474

AdditionalTitles in the Series:
The Semantic Web:Real-World Applications from Industry edited by Jorge Cardoso, Martin
Hepp, Miltiadis Lytras; ISBN: 978-0-387-48530-0
Social Networks and the Semantic Web by Peter Mika; ISBN: 978-0-387-71000-6
Ontology Alignment: Bridging the Semantic Gap by Marc Ehrig, ISBN: 0-387-32805-X
Semantic Web Services: Processes and Applications edited by Jorge Cardoso, Amit P. Sheth,
ISBN 0-387-30239-5
Canadian Semantic Web edited by Mamadou T. Koné., Daniel Lemire; ISBN 0-387-29815-0
Semantic Management of Middleware by Daniel Oberle; ISBN: 0-387-27630-0

Ontology Management
Semantic Web, Semantic Web Services, and

Business Applications

edited by

Martin Hepp

University of Innsbruck
Austria

Pieter De Leenheer
Vrije Universiteit Brussel

Belgium

Aldo de Moor
CommunitySense
The Netherlands

York Sure
University of Karlsruhe

Germany

Library of Congress Control Number: 2007935999

Ontology Management: Semantic Web, Semantic Web Services, and Business
Applications
Edited by Martin Hepp, Pieter De Leenheer, Aldo de Moor, York Sure

Martin Hepp
University of Innsbruck
Digital Enterprise Research Institute
Technikerstr. 21a
A-6020 INNSBRUCK
AUSTRIA
mhepp@computer.org

Pieter De Leenheer
Vrije Universiteit Brussel
Pleinlaan 2
B-1050 BRUSSELS 5
BELGIUM
pieter.de.leenheer@vub.ac.be

Aldo de Moor
CommunitySense
Cavaleriestraat 2
NL-5017 ET TILBURG
THE NETHERLANDS
ademoor@communitysense.nl

York Sure
SAP Research
Vincenz-Priessnitz-Str. 1
D-76131 KARLSRUHE
GERMANY
york.sure@sap.com

Printed on acid-free paper.

springer.com

All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now know or hereafter developed is forbidden. The use in this
publication of trade names, trademarks, service marks and similar terms, even if they are not identified as
such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary
rights.

9 8 7 6 5 4 3 2 1

© 2008 Springer Science+Business Media, LLC

e-ISBN 978-0-387-69900-4 ISBN 978-0-387-69899-1

Dedications

To Susanne and Matthis

Martin Hepp

To my parents

Pieter De Leenheer

To Mishko

Aldo de Moor

To my family

York Sure

TABLE OF CONTENTS

Foreword... ix

Acknowledgements...xiii

List of Reviewers ... xv

List of Authors ...xvii

I. OVERVIEW

1 Ontologies: State of the Art, Business Potential,
and Grand Challenges ... 3

Martin Hepp

II. INFRASTRUCTURE

2 Engineering and Customizing Ontologies................................... 25
The Human-Computer Challenge in Ontology Engineering

Martin Dzbor and Enrico Motta

3 Ontology Management Infrastructures.. 59

Walter Waterfeld, Moritz Weiten, and Peter Haase

4 Ontology Reasoning with Large Data Repositories.................... 89

Stijn Heymans, Li Ma, Darko Anicic, Zhilei Ma, Nathalie Steinmetz,
Yue Pan, Jing Mei, Achille Fokoue, Aditya Kalyanpur, Aaron
Kershenbaum, Edith Schonberg, Kavitha Srinivas, Cristina Feier,
Graham Hench, Branimir Wetzstein, and Uwe Keller

III. EVOLUTION, ALIGNMENT, AND THE BUSINESS PERSPECTIVE

5 Ontology Evolution... 131
State of the Art and Future Directions

Pieter De Leenheer and Tom Mens

viii Table of Contents

6 Ontology Alignments .. 177
An Ontology Management Perspective

Jérôme Euzenat, Adrian Mocan, and François Scharffe

7 The Business View: Ontology Engineering Costs 207

Elena Simperl and York Sure

IV. EXPERIENCES

8 Ontology Management in e-Banking Applications................... 229
Integrating Third-Party Applications within an e-Banking Infrastructure

José-Manuel López-Cobo, Silvestre Losada, Laurent Cicurel, José
Luis Bas, Sergio Bellido, and Richard Benjamins

9 Ontology-Based Knowledge Management in
Automotive Engineering Scenarios... 245

Jürgen Angele, Michael Erdmann, and Dirk Wenke

10 Ontologising Competencies in an
Interorganisational Setting .. 265

Stijn Christiaens, Pieter De Leenheer, Aldo de Moor, and Robert
Meersman

 About the Editors .. 289

 Index.. 291

FOREWORD

Dieter Fensel
DERI, University of Innsbruck

About fifteen years ago, the word “ontologies” started to gain popularity
in computer science research. The term was initially borrowed from

creating the abstractions needed when using computers for real-world
problems. It was novel in at least three senses: First, taking well-studied
philosophical distinctions as the foundation for defining conceptual
elements; this helps create more lasting data and object models and eases
interoperability. Second, using formal semantics for an approximate
description of what a conceptual element’s intended meaning is. This helps
avoid unintended interpretations and, consequently, unintended usages of a
conceptual element. It also allows using a computer for reasoning about
implicit facts. And, last but not least, this improves the interoperability of
data and services alike. Third, ontologies are meant to be consensual
abstractions of a relevant field of interest, i.e., they are shared and accepted
by a large audience. Even though the extreme stage of consensus in the form
of a “true” representation of the domain is impossible to reach, a key goal is
a widely accepted model of reality; accepted by many people, applicable for
many tasks, and manifested in many different software systems.

It comes as no surprise that the idea of ontologies became quickly very
popular, since what they promise was and is utterly needed: a shared and
common understanding of a domain that can be communicated between
people and application systems. It is utterly needed, because the amount of
data and services which we are dealing with everyday is beyond of what
traditional techniques and tools empower us to handle. The World Wide
Web alone has kept on growing exponentially for several years, and the
number of corporate Web services is vast and growing, too.

However, the initial excitement about ontologies in the late 1990s in
academia did not show the expected impact in real-world applications; nor
did ontologies actually mitigate interoperability problems at a large scale.

philosophy but quickly established as a handy word for a novel approach of

x Foreword

Quite obviously, early research had underestimated the complexity of
building and using ontologies. In particular, an important duality1 had been
widely ignored:

1. Ontologies define a formal semantics for information allowing
information processing by a computer.

2. Ontologies define a real-world semantics allowing to link machine
processable content with meaning for humans based on consensual
terminologies.

The first part of this duality can fairly easily be addressed by technology:
by defining formalisms for expressing logical statements about conceptual
elements and by providing infrastructure that can process it. The second part
is much more difficult to solve: We have to produce models of relevant
domains that reflect a consensual view of the respective domain, as
perceived and comprehended by a wide audience of relevant human actors.
It is this alignment with reality that makes building and using ontologies
complex and difficult, since producing an ontology is not a finite research
problem of having the inner structures of the world analyzed by a single
clever individual or a small set of highly skilled researchers, but it is an
ongoing, never ending social process.

It is thus pretty clear that there will never be such a thing as the ontology
to which everybody simply subscribes. Much more, ontologies arise as pre-
requisite and result of cooperation in certain areas reflecting task, domain,
and sociological boundaries. In the same way as the Web weaves billions of
people together to support them in their information needs, ontologies can
only be thought of as a network of interweaved ontologies. This network of
ontologies may have overlapping and excluding pieces, and it must be as
dynamic in nature as the dynamics of the underlying process. In other words,
ontologies are dynamic networks of formally represented meaning.

Ontology management is the challenging task of producing and
maintaining consistency between formal semantics and real-world
semantics. This book provides an excellent summary of the core challenges
and the state of the art in research and tooling support for mastering this task.
It also summarizes important lessons learned in the application of ontologies
in several use cases.

The work presented in this book is to a large degree the outcome of
European research projects, carried out in cooperation between enterprises
and leading research institutions, in particular the projects DIP (FP6-
507483), Knowledge Web (FP6-507482), SEKT (FP6-027705), and

1 D. Fensel, “Ontologies: Dynamic networks of formally represented meaning,” available at

http://sw-portal.deri.at/papers/publications/network.pdf

Foreword xi

SUPER (FP6-026850). From early on, the European Commission had
realized the enormous potential of ontologies for handling the
interoperability problems in European business, research, and culture, which
are caused by our rich cultural diversity. It is now that ontology management
is ready for large, real-world challenges, thanks to this visionary and
continuous support.

Innsbruck, August 2007 Prof. Dr. Dieter Fensel
Director
Digital Enterprise Research Institute
University of Innsbruck

ACKNOWLEDGEMENTS

The editors would like to thank all authors for their contributions and
their willingness to work hard on integrating numerous suggestions from the
reviews, all reviewers for their thorough and constructive reviews, Damien
Trog for his help in editing several chapters, Sharon Palleschi and Susan
Lagerstrom-Fife from Springer for their excellent support, and Doug Wilcox
from WordSmith Digital Document Services for the careful compilation and
final layouting of the book.

This book was supported by the European Commission under the project
DIP (FP6-507483) in the 6th Framework Programme for research and
technological development.

LIST OF REVIEWERS

The following individuals supported this book as reviewers and provided
numerous detailed and constructive reviews on previous versions of the
papers included in this volume:

Jürgen Angele
Alessio Bosca
Jeen Broekstra
Andy Bytheway
Jorge Cardoso
Roberta Cuel
Harry S. Delugach
Alicia Díaz
Martin Dzbor
Dragan Gaševic
Domenico Gendarmi
Stephan Grimm
Marko Grobelnik
Kristina Groth
Peter Haase
Andreas Harth
Stijn S.J.B.A Hoppenbrouwers
Mick Kerrigan
Michel Klein
Pia Koskenoja
Pär Lannerö
Ivan Launders
Holger Lausen

Juhnyoung Lee
Li Ma
Lyndon Nixon
Natasha Noy
Daniel Oberle
Eyal Oren
Simon Polovina
Laura Anna Ripamonti
Eli Rohn
Pavel Shvaiko
Elena Simperl
Katharina Siorpaes
Antonio Lucas Soares
Lucia Specia
Ljiljana Stojanovic
Heiner Stuckenschmidt
Tania Tudorache
Denny Vrandecic
Walter Waterfeld
Hans Weigand
Moritz Weiten
Bosse Westerlund

LIST OF AUTHORS

Darko Anicic
Digital Enterprise Research Institute (DERI), University of Innsbruck, Technikerstrasse 21a,
A-6020 Innsbruck, Austria

Jürgen Angele
Ontoprise GmbH, Amalienbadstr. 36, D-76227 Karlsruhe, Germany

José Luis Bas
Bankinter, Paseo de la Castellana 29, E-28046, Madrid, Spain

Sergio Bellido
Bankinter, Paseo de la Castellana 29, E-28046, Madrid, Spain

Richard Benjamins
Telefónica Investigación y Desarrollo SAU, Emilio Vargas 6, E-28029, Madrid, Spain

Stijn Christiaens
Semantics Technology & Applications Research Laboratory (STARLab), Vrije Universiteit
Brussel, Pleinlaan 2, B-1050 Brussel 5, Belgium

Laurent Cicurel
Intelligent Software Components S.A., C/ Pedro de Valdivia 10, E-28006, Madrid, Spain

Pieter De Leenheer
Semantics Technology & Applications Research Laboratory (STARLab), Vrije Universiteit
Brussel, Pleinlaan 2, B-1050 Brussel 5, Belgium

Aldo de Moor
CommunitySense, Cavaleriestraat 2, NL-5017 ET Tilburg, The Netherlands

Martin Dzbor
Knowledge Media Institute, The Open University, Milton Keynes, MK7 6AA, UK

Michael Erdmann
Ontoprise GmbH, Amalienbadstr. 36, D-76227 Karlsruhe, Germany

Jérôme Euzenat
INRIA Rhône-Alpes & LIG, 655 avenue de l'Europe, F-38330 Montbonnot Saint-Martin,
France

xviii List of Authors

Cristina Feier
Digital Enterprise Research Institute (DERI), University of Innsbruck, Technikerstrasse 21a,
A-6020 Innsbruck, Austria

Achille Fokoue
IBM Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598, USA

Peter Haase
AIFB, Universität Karlsruhe (TH), Englerstr. 28, D-76128 Karlsruhe, Germany

Graham Hench
Digital Enterprise Research Institute (DERI), University of Innsbruck, Technikerstrasse 21a,
A-6020 Innsbruck, Austria

Martin Hepp
Digital Enterprise Research Institute, University of Innsbruck, Technikerstrasse 21a, A-6020
Innsbruck, Austria

Stijn Heymans
Digital Enterprise Research Institute (DERI), University of Innsbruck, Technikerstrasse 21a,
A-6020 Innsbruck, Austria

Aditya Kalyanpur
IBM Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598, USA

Uwe Keller
Digital Enterprise Research Institute (DERI), University of Innsbruck, Technikerstrasse 21a,
A-6020 Innsbruck, Austria

Aaron Kershenbaum
IBM Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598, USA

José-Manuel López-Cobo
Intelligent Software Components S.A., C/ Pedro de Valdivia 10, E-28006, Madrid, Spain

Silvestre Losada
Intelligent Software Components S.A., C/ Pedro de Valdivia 10, E-28006, Madrid, Spain

Li Ma
IBM China Research Lab, Building 19 Zhongguancun Software Park, Beijing 100094, China

Zhilei Ma
Institute of Architecture of Application Systems (IAAS), University of Stuttgart,
Universitätsstraße 38, D-70569 Stuttgart, Germany

Robert Meersman
Semantics Technology & Applications Research Laboratory (STARLab), Vrije Universiteit
Brussel, Pleinlaan 2, B-1050 Brussel 5, Belgium

Jing Mei
IBM China Research Lab, Building 19 Zhongguancun Software Park, Beijing 100094, China

List of Authors xix

Tom Mens
University of Mons-Hainaut (U.M.H.), Software Engineering Lab, 6, Avenue du Champ de
Mars, B-7000 Mons, Belgium

Adrian Mocan
Digital Enterprise Research Institute (DERI), University of Innsbruck, Technikerstrasse 21a,
A-6020 Innsbruck, Austria

Enrico Motta
Knowledge Media Institute, The Open University, Milton Keynes, MK7 6AA, UK

Yue Pan
IBM China Research Lab, Building 19 Zhongguancun Software Park, Beijing 100094, China

François Scharffe
Digital Enterprise Research Institute (DERI), University of Innsbruck, Technikerstrasse 21a,
A-6020 Innsbruck, Austria

Edith Schonberg
IBM Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598, USA

Elena Simperl
Digital Enterprise Research Institute (DERI), University of Innsbruck, Technikerstrasse 21a,
A-6020 Innsbruck, Austria

Kavitha Srinivas
IBM Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598, USA

Nathalie Steinmetz
Digital Enterprise Research Institute (DERI), University of Innsbruck, Technikerstrasse 21a,
A-6020 Innsbruck, Austria

York Sure
SAP Research, Vincenz-Priessnitz-Str. 1, D-76131 Karlsruhe, Germany

Walter Waterfeld
Software AG, Uhlandstr. 12, D-64289 Darmstadt, Germany

Moritz Weiten
Ontoprise GmbH, Amalienbadstr. 36, D-76227 Karlsruhe, Germany

Dirk Wenke
Ontoprise GmbH, Amalienbadstr. 36, D-76227 Karlsruhe, Germany

Branimir Wetzstein
Institute of Architecture of Application Systems (IAAS), University of Stuttgart,
Universitätsstraße 38, D-70569 Stuttgart, Germany

I. OVERVIEW

Chapter 1

ONTOLOGIES: STATE OF THE ART, BUSINESS
POTENTIAL, AND GRAND CHALLENGES

Martin Hepp
Digital Enterprise Research Institute, University of Innsbruck, Technikerstraße 21a, A-6020
Innsbruck, Austria, mhepp@computer.org

Abstract: In this chapter, we give an overview of what ontologies are and how they can
be used. We discuss the impact of the expressiveness, the number of domain
elements, the community size, the conceptual dynamics, and other variables on
the feasibility of an ontology project. Then, we break down the general
promise of ontologies of facilitating the exchange and usage of knowledge to
six distinct technical advancements that ontologies actually provide, and
discuss how this should influence design choices in ontology projects. Finally,
we summarize the main challenges of ontology management in real-world
applications, and explain which expectations from practitioners can be met as
of today.

Keywords: conceptual dynamics; conceptual modeling; costs and benefits; information
systems; knowledge representation; ontologies; ontology management;
scalability; Semantic Web

1. ONTOLOGIES IN COMPUTER SCIENCE AND
INFORMATION SYSTEMS

Within less than twenty years, the term “ontology,” originally borrowed
from philosophy, has gained substantial popularity in computer science and
information systems. This popularity is likely because the promise of

purposes: Achieving interoperability between multiple representations of
reality (e.g. data or business process models) residing inside computer
systems, and between such representations and reality, namely human users
and their perception of reality. Surprisingly, people from various research

ontologies targets one of the core difficulties of using computers for human

4 Chapter 1

communities often use the term ontology with different, partly incompatible
meanings in mind. In fact, it is a kind of paradox that the seed term of a
novel field of research, which aims at reducing ambiguity about the intended
meaning of symbols, is understood and used so inconsistently.

In this chapter, we try to provide a clear understanding of the term and
relate ontologies to knowledge bases, XML schemas, and knowledge
organization systems (KOS) like classifications. In addition, we break down
the overall promise of increased interoperability to six distinct technical
contributions of ontologies, and discuss a set of variables that can be used to
classify ontology projects.

1.1 Different notions of the term ontology

Already in the early years of ontology research, Guarino and Giaretta
(1995) raised concerns that the term “ontology” was used inconsistently.
They found at least seven different notions assigned to the term: “…

1. Ontology as a philosophical discipline
2. Ontology as a an informal conceptual system
3. Ontology as a formal semantic account
4. Ontology as a specification of a conceptualization
5. Ontology as a representation of a conceptual system via a logical

theory
5.1 characterized by specific formal properties
5.2 characterized only by its specific purposes

6. Ontology as the vocabulary used by a logical theory
7. Ontology as a (meta-level) specification of a logical theory” (from

Guarino & Giaretta, 1995).

As the result of their analysis, they suggested to weaken the popular —
but often misunderstood and mis-cited — definition of “a specification of a
conceptualization” by Tom Gruber (Gruber, 1993) to “a logical theory which
gives an explicit, partial account of a conceptualization” (Guarino &
Giaretta, 1995). Partial account in here means that the formal content of an
ontology cannot completely specify the intended meaning of a conceptual
element but only approximate it — mostly, by making unwanted
interpretations logical contradictions.

Although this early paper had already pointed to the possible
misunderstandings, even as of today there is still a lot of inconsistency in the
usage of the term, in particular at the border between computer science and
information systems research.

1. Ontologies: State of the Art, Business Potential, and Grand Challenges 5

The following three aspects of ontologies are common roots of
disagreement about what an ontology is and what its constituting properties
are:

Truth vs. consensus: Early ontology research was very much driven by
the idea of producing models of reality that reflect the “true” structures and
that are thus valid independent of subjective judgment and context. Other
researchers, namely Fensel (Fensel, 2001), have stressed that it is not
possible to produce such “true” models and that instead consensual, shared
human judgments must be the core of ontologies.

Formal logic vs. other modalities: For a large fraction of ontology
researchers, formal logic as a means (i.e., modality) for expressing the
semantic account is a constituting characteristic of an ontology. For those
researchers, neither a flat vocabulary with a set of attributes specified in
natural language nor a conceptual model of a domain specified using an
UML class diagram is an ontology. This is closely related to the question on
whether the ontological commitment is only the logical account of the
ontology or whether it also includes the additional account in textual
definitions of its elements. In our opinion, it is highly arguable whether
formal logic is the only or even the most appropriate modality for specifying
the semantics of a conceptual element in an ontology.

Specification vs. conceptual system: There is also some argument on
whether an ontology is the conceptual system or its specification. For some
researchers, an ontology is an abstraction over a domain of interest in terms
of its conceptual entities and their relationships. For others, it is the explicit
(approximate) specification of such an abstraction in some formalism, e.g. in
OWL, WSML, or F-Logic. In our opinion, the more popular notion is
reading an ontology as the specification of the conceptual system in the form
of a machine-readable artifact.

These differences are not mere academic battles over terminology; they
are the roots of severe misunderstandings between research in computer
science and research in information systems, and between academic research
and practitioners. In computer science, researchers assume that they can
define the conceptual entities in ontologies mainly by formal means — for
example, by using axioms to specify the intended meaning of domain
elements. In contrast, in information systems, researchers discussing
ontologies are more concerned with understanding conceptual elements and
their relationships, and often specify their ontologies using only informal
means, such as UML class diagrams, entity-relationship models, semantic
nets, or even natural language. In such contexts, a collection of named
conceptual entities with a natural language definition — that is, a controlled
vocabulary — would count as an ontology.

6 Chapter 1

Also, we think it is important to stress that ontologies are not just formal
representations of a domain, but community contracts about such
representations. Given that a discourse is a dynamic, social process during
which participants often modify or discard previous propositions or
introduce new topics, such a community contract cannot be static, but must
evolve. Also, the respective community must be technically and skill-wise
able to build or commit to the ontology (Hepp, 2007). For example, one
cannot expect an individual or a legal entity to authorize the semantic
account of an ontology without understanding what they commit to by doing
so.

1.2 Ontologies vs. knowledge bases, XML schemas, and
knowledge organization systems

In this section, we try to differentiate ontologies from knowledge bases,
XML schemas, and knowledge organization systems (KOS) as related
terminology.

Knowledge bases: Sometimes, ontologies are confused with knowledge
bases, in particular because the same languages (OWL, RDF-S, WSML, etc.)
and the same tools and infrastructure can be used both for creating
ontologies and for creating knowledge bases. There is, however, a clear
distinction: Ontologies are the vocabulary and the formal specification of the
vocabulary only, which can be used for expressing a knowledge base. It
should be stressed that one initial motivation for ontologies was achieving
interoperability between multiple knowledge bases. So, in practice, an
ontology may specify the concepts “man” and “woman” and express that
both are mutually exclusive — but the individuals Peter, Paul, and Marry are
normally not part of the ontology. Consequently, not every OWL file is an
ontology, since OWL files can also be used for representing a knowledge
base.

This distinction is insofar difficult as individuals (instances) sometimes
belong to the ontology and sometimes do not. Only those individuals that are
part of the specification of the domain and not pure facts within that domain
belong to the ontology. Sometimes it depends on the scope and purpose of
an ontology which individuals belong to it, and which are mere data. For
example, the city of Innsbruck as an instance of the class “city” would
belong to a tourism ontology, but a particular train connection would not.

We suggest speaking of ontological individuals and data individuals.
With ontological individuals we mean such that are part of the specification
of a domain, and with data individuals, we mean such being part of a
knowledge base within that domain.

1. Ontologies: State of the Art, Business Potential, and Grand Challenges 7

XML schemas are also not ontologies, for three reasons:

1. They define a single representation syntax for a particular problem
domain but not the semantics of domain elements.

2. They define the sequence and hierarchical ordering of fields in a valid
document instance, but do not specify the semantics of this ordering. For
example, there is no explicit semantics of nesting elements.

3. They do not aim at carving out re-usable, context-independent categories
of things — e.g. whether a data element “student” refers to the human
being or the role of being as student. Quite the opposite, we can often
observe that XML schema definitions tangle very different categories in
their element definitions, which hampers the reuse of respective XML
data in new contexts.

Knowledge organization systems (KOS) are means for structuring the
storage of knowledge assets for better retrieval and use. Popular types of
KOS are classifications and controlled vocabularies for indexing documents.
There is a long tradition of KOS research and applications, in particular in
library science.

The main difference between traditional KOS and ontologies is that the
former often tangle the dimension of search paths with the actual domain
representation. In particular do classical KOS mostly lack a clear notion of
what it means to be an instance or a subclass of a category. For example, the
directory structure on our personal computer is a KOS, but not an
ontology — since we mostly put a file into exactly one single folder, we try
to make our folder structure match our typical search paths, and not to
intersubjective, context-independent, and abstract categories of things.

In contrast, one key property of an ontology is a context-independent
notion of what it means to be an instance or a subclass of a given concept. So
while in a closed corporate KOS, one can put an invoice for batteries for a
portable radio in the “Radio and TV” folder, ontologies make sense only if
we clearly distinguish things, related things, parts and component of those
things, documents describing those things, and similar objects that are held
together mainly by being somehow related to a joint topic.

This tangling between search path and conceptualization in traditional
KOS was caused by past technical limitations of knowledge access. For
example, libraries must often sort books by one single identifier only, and
maintaining extra indices was extremely labor-intensive and error-prone.
Thus, the core challenge in designing traditional KOS was to partition an
area of interest in a way compatible with popular search paths instead of
carving out the true categories of existence guided by philosophical notions.

This does not mean that designing KOS is a lesser art than ontology
engineering — it is just that traditional KOS had to deal with the technical

8 Chapter 1

limitation of a single, consensual search path, which is now less relevant.
One of the most striking examples of mastering the design of a KOS is the
science of using fingerprints for forensic purposes back in the 1920s: The
major achievement was not spotting that fingerprints are unique and suitable
for identifying a human being. Instead, the true achievement was to construct
a suitable KOS so that traces found at a crime scene could be quickly
compared with a large set of registered fingerprints — without visually
comparing every single registered print, see e.g. Heindl (1927).

So while ontology engineering can learn a lot from KOS research, it is
not the same, because intersubjective, context-neutral categories of objects
are key for successful ontology design. Without such “clean” categories of
objects, the potential of ontologies for improved data interoperability cannot
materialize (see also section 2.1).

1.3 Six characteristic variables of an ontology project

There exist several approaches of classifying types of ontologies, namely
by Lassila and McGuinness (Lassila & McGuinness, 2001) and by Oberle
(Oberle, 2006, pp. 43–47). Lassila and McGuinness did order ontologies by
increasing degree of formal semantics, while Oberle introduced the idea of
combining multiple dimensions. On the basis of these two approaches, we
suggest classifying ontology projects using the following six characteristics:

Expressiveness: The expressiveness of the formalism used for specifying
the ontology. This can range from a flat frame-based vocabulary to a richly
axiomatized ontology in higher order logic. A higher expressiveness allows
more sophisticated reasoning and excludes more unwanted interpretations,
but also requires much more effort for producing the ontology. Also, it is
more difficult for users to understand an expressive ontology, because it
requires a better education in logic and more time. Lastly, expressiveness
increases the computational costs of reasoning.

Size of the relevant community: Ontologies that are targeted at a large
audience must have different properties than those intended for a small
group of individuals only. For a large relevant community, an ontology must
be easy to understand, well documented, and of limited size. Also, the
consensus finding mechanism in broad audiences must be less subtle. For an
in-depth discussion of this, see (Hepp, 2007). The important number in here
is the number of human actors that are expected to commit to the ontology.

Conceptual dynamics in the domain, i.e., the amount of new
conceptual elements and changes in meaning to existing ones per period of
time: Most domains undergo some conceptual dynamics, i.e., new categories
of things become relevant, the definition of existing ones changes, etc. The
amount of conceptual dynamics in the domain of interest determines the

1. Ontologies: State of the Art, Business Potential, and Grand Challenges 9

necessary versioning strategy and also limits the feasible amount of detail of
the ontology — the more dynamics there is in a given domain, the harder it
gets to maintain a richly axiomatized ontology.

Vocabulary

Narrower/Broader
Relations

Formal Taxonomies

Description Logics

First-Order Logic

Expressiveness

Size of the
Relevant Community

Conceptual Dynamics
in the Domain

Number of Conceptual
Elements in the Domain

Degree of Subjectivity
in a Conceptualization

of the Domain

Average Size of the
Specification
per Element

Higher Order Logics

Figure 1-1. The six characteristic variables of an ontology project

Number of conceptual elements in the domain: How large will the
ontology be? A large ontology is much harder to visualize properly, and
takes more effort to review. Also, large ontologies can be unfeasible for use
with reasoners that require an in-memory model of the ontology. Often,
smaller ontologies are adopted more quickly and gain a greater popularity
than large ones (Hepp, 2007).

Degree of subjectivity in a conceptualization of the respective
domain: To which degree are the notions of a concept different between
actors? For example, domains like religion, culture, and food are likely much
more prone to subjective judgments than natural sciences and engineering.
The degree of subjectivity determines the appropriate type of consensus-
finding mechanisms, and it also limits the feasible specificity per element
(i.e., the richness of the ontological commitment). The latter is because the
likelihood of disagreement increases the more specific our definitions get.

Average size of the specification per element: How comprehensive is
the specification of an average element? For example, are we expecting two

10 Chapter 1

attributes per concept only, or fifty first-order logic axioms? This variable
influences the effort needed for achieving consensus, for coding the
ontology, and for reviewing the ontological commitment before adopting the
respective ontology.

Figure 1-1 presents the six variables in the form of a radar graph. By
adding scales to the axes, one can use this to quickly characterize ontology
projects.

2. SIX EFFECTS OF ONTOLOGIES

The promises of what ontologies can solve are broad, but as a matter of
fact, ontologies are not good for every problem. Since ontologies are not
everlasting assets but have a lifespan and require maintenance, there are
situations in which building the ontologies required for a specific task is
more difficult or more costly that solving the task without ontologies.

In this section, we will analyze the actual contribution of ontologies to
improved access and use of knowledge resources and identify six core parts
of this contribution. This is insofar relevant as the various contributions
differ heavily in how they depend on the formal account of an ontology. In
particular, we will show that several claims of what ontologies can do
depend not mainly on a rich formalization, but are materialized by clean
conceptual modeling based on philosophical notions and by well-thought
lexical enrichment (e.g. a human-readable documentation or synonym sets
per each element). This also explains why ontologies are much more useful
for new information systems as compared to problems related to legacy
systems. Ontologies, for example, can provide little help if old source
systems provide data in a poorly structured way.

The uses of ontologies have been summarized by Gruninger and Lee as
follows (Gruninger & Lee, 2002, p. 40): “…

• for communication
o between implemented computational systems
o between humans
o between humans and implemented computational systems

• for computational inference
o for internally representing plans and manipulating plans and

planning information
o for analyzing the internal structures, algorithms, inputs and

outputs of implemented systems in theoretical and conceptual
terms

• for reuse (and organization) of knowledge

1. Ontologies: State of the Art, Business Potential, and Grand Challenges 11

o for structuring or organizing libraries or repositories of plans
and planning and domain information.”

Note that ontologies provide more than the basis for computational
inference on data, but are also helpful in improving the interaction between
multiple human actors and between humans and implemented computer
systems.

Whenever computer science meets practical problems, there is a trade-off
problem between human intelligence and computational intelligence.
Consequently, it is important to understand what ontologies are not good for
and what is difficult. For example, people from outside the field often hope
for support in problems like unit conversion (inches to centimeters, dollars to
Euro, net prices to gross prices, etc.) or different reference points for
quantitative attributes, while current ontology technology is not suited for
handling functional conversions and arithmetics in general.

Also, it was often said that integrating e-business product data and
catalogs would benefit from ontologies, see e.g. the respective challenge of
mapping UNSPSC and eCl@ss (Schulten et al., 2001). While there were
academic prototypes and success stories (Corcho & Gómez-Pérez, 2001), the
practical impact is small, since the conceptual modeling quality of the two
standards is limited, which constrains the efficiency of possible mappings.
For example, assume that we have two classification systems A and B, and
that system A includes a category “TV Sets and Accessories” and system B a
related one “TV Sets and Antennas.” Now, the only possible mapping is that
“TV Sets and Antennas” is a subclass of “TV Sets and Accessories.” This
provides zero help for reclassifying source data stored using system A into
system B. Also, those two classifications undergo substantial change over
time, and a main challenge for users is to classify new, unstructured data sets
using semi-automatic tools. In general, for any problem where the source
representation is weakly structured, the actual contribution of ontologies is
limited, because the main problem is then lifting that source data to a more
structured conceptual level — something for which machine learning and
natural language technologies can contribute more than ontologies can.

Fortunately, there are now more and more successful examples of
ontology usage, e.g. matching patients to clinical trials (Patel et al., 2007)
and the three uses cases in chapters 8, 9, and 10 of this book. Additional use
cases are described in Cardoso, Hepp, & Lytras (2007). It must be said,
though, that the broad promises of the early wave of ontology research were
too optimistic, because the advocates had ignored the technical difficulties of
(1) providing ontologies of sufficient quality and currency, (2) of annotating
source data, and (3) of creating complete, current, and correct mappings —
and did mostly not compare the costs and benefits of ontologies over their

12 Chapter 1

lifespan. Two notable exceptions are Menzies in 1999 (Menzies, 1999) and
recently Oberle (Oberle, 2006, in particular pp. 242–243).

In the following, we trace back the general advancement that ontologies
provide to six distinct technical effects.

2.1 Using philosophical notions as guidance for
identifying stable and reusable conceptual elements

One core part of ontological engineering is the art and science of
producing clean, lasting, and reusable conceptual models. With clean we
mean conceptual modeling choices that are based on philosophically well-
founded distinctions and that hold independent of the application context.
The most prominent contribution in this field is the OntoClean methodology,
see (Guarino & Welty, 2002) and (Guarino & Welty, 2004).

A practical example is the distinction between actors and their roles, e.g.
that being a student is not a subclass of being a human, but a role — or that a
particular make and model of a commodity is not a subclass of a particular
type of good, but a conceptual entity in its own right.

Such untangling of objects increases the likelihood of interoperability of
data, because it is the precision and subtleness of the source representation
that always determines the degree of automation in the usage and access to
knowledge representations. Also, maintaining attributes for types of objects
is much easier if the hierarchy of objects is designed in this way.

In other words: The cleaner our conceptual distinctions are, the more
likely it is that we are not putting into one category objects that need to be
kept apart in other usages of the same data — in future applications and in
novel contexts.

So ontology engineering is also a school of thinking that leads to better
conceptual models.

2.2 Unique identifiers for conceptual elements

Exactly 20 years ago, Furnas and colleagues have shown that the
likelihood that two individuals choose the same word for the same thing in
human-system communication is less than 20% (Furnas, Landauer, Gomez,
& Dumais, 1987). They have basically proven that there is “no good access
term for most objects” (Furnas, Landauer, Gomez, & Dumais, 1987, p. 967).
They also studied the likelihood that two people using the same term refer to
the same referent, with only slightly better results; as a cure, they suggested
the heavy use of synonyms.

Ontologies provide unique identifiers for conceptual elements, often in
the form of a URI. We call this the “controlled vocabulary effect” of

1. Ontologies: State of the Art, Business Potential, and Grand Challenges 13

ontologies. This effect is an important contribution, and the use of ontologies
is often motivated by problems caused by homonyms and synonyms in
natural languages.

However, we should note that this vocabulary effect does not require the
specification of domain elements by formal means. Well-thought
vocabularies with carefully chosen terminology and synonym sets can serve
the same purpose. Much more, we do not know of any quantitative evidence
that the formal semantics of any available ontology surpasses such well-
designed vocabularies in efficiency. At the same time, formal content raises
the bar for user participation.

2.3 Excluding unwanted interpretations by means of
informal semantics

Besides providing unique identifiers only, ontologies can be augmented
by well-thought textual definitions, synonym sets, and multi-media elements
like illustrations. In fact, the intended semantics of an ontology element
cannot be conveyed by the formal specification only but requires a human-
readable documentation. In practice, we need ontologies that define elements
with a narrow, real-world meaning. For example, we may need ontologies
with classes like

Portable Color TV ⊆ TV Set ⊆ Media Device

In such cases, the intended semantics goes way beyond

A ⊆ B ⊆ C

Instead, we will have to exclude unwanted interpretations by carefully
chosen labels and textual definitions. There exists a lot of experience in the
field of terminology research that could help ontology engineers in this task,
namely the seminal work by Eugen Wüster, dating back to the 1930s on how
we should construct technical vocabularies in order to mitigate
interoperability problems in technology and trade in a world of high
semantic specificity (Wüster, 1991). His findings and guidelines on how to
create consensual, standardized multi-lingual vocabularies for technological
domains are by far more specific and more in-depth than the simplistic
examples of ontologies for e-commerce in the early euphoria about
ontologies in the late 1990.

This “linguistic grounding” of ontology projects is a major challenge —
at the same time, such proper textual definitions can often already keep a
large share of what ontologies promise. In particular when it comes to
attributes and relations, specifying their intended semantics by axioms is
difficult and often unfeasible, while properly chosen textual definitions are

14 Chapter 1

in practice sufficient for communicating the intended meaning. eCl@ss
(eClass e.V., 2006) and eClassOWL (Hepp, 2006a) and (Hepp, 2006b) for
example, specify the intended meaning of the attribute “height” (property
BAA020001) as follows:

“With objects with [a] preferred position of use, the dimension which is
generally measured oriented to gravity and generally measured
perpendicular to the supporting surface.”

It is noteworthy that the RosettaNet Technical Dictionary, a standardized
vocabulary for describing electronic components (RosettaNet, 2004) does
not include any hierarchy, because the participating entities could not reach
consensus on that. Instead, it consists just of about 800 flat classes
augmented by about 3000 datatype properties but was still practically useful.

This subsection should tell two things: First, that matching the state of
the art in terminology research is key for the informal part of an ontology
project. Second, that a large share of the promise of ontologies can be
achieved solely by the three technical effects described so far, which do not
require the specification of ontology elements by axioms and neither a
reasoner at run-time.

2.4 Excluding unwanted interpretations by means of
formal semantics

As we have already discussed, a large part of ontology research deals
with the formal account of ontologies, i.e., specifying an approximate
conceptualization of a domain by means of logic. For example, we may say
that two classes are disjoint, that one class is a subclass of another, or that
being an instance of a certain class implies certain properties. For some
researchers, this formal account of an ontology is even the only relevant
aspect of ontologies.

The axiomatic specification of conceptual elements has several
advantages. First of all, formal logic provides a precise, unambiguous
formalism — compared to the blurriness of e.g. many graphical notations. In
contrast, it took quite some time until Brachman described in his seminal
paper that the blurriness of is-a relations in semantic nets is very
problematic, teaching us in particular to make a clear distinction between
sublassOf and instanceOf (Brachman, 1983).

In a nutshell, logical axioms about the element of an ontology constrain
the interpretation of this element. The more statements are made about a
conceptual element by means of axioms, the less can we err on what is
meant, because some interpretations would lead to logical contradictions.
For an in-depth discussion on whether aximatization is effective as “the main

1. Ontologies: State of the Art, Business Potential, and Grand Challenges 15

tool used to characterize the object of inquiry,” see Ferrario (2006). Also, we
highly recommend John Sowa’s “Fads and Fallacies of Logic” (Sowa,
2007).

It is definitely not a mistake to use a rock-solid formal ground for
specifying what needs to be specified in an ontology, because it eliminates
subjective judgment and differences in the interpretation of the language for
specifying an ontology. Many graphical notations, including the popular
entity-relationship diagrams (ERDs) have suffered from being used by
different people with a different meaning in mind, hampering exchange and
reuse of models.

However, this does not mean that full axiomatization is the most
important aspect of building an ontology. Whether an ontology should be
heavyweight or lightweight in terms of its formal account depends on the
trade-off between what one gains by a richer axiomatization vs. what efforts
are necessary to produce this. Note that producing in here means not only
writing down an axiomatic definition of a conceptual element, but also to
achieve consensus with all stakeholders about this axiomatic definition.

2.5 Inferring implicit facts automatically

The axiomatic definition of conceptual elements as described in the
previous section also empowers computational inferences, i.e., the use of a
reasoner component to deduce new, implicit facts. An important contribution
of this property is that it reduces redundancy in the representation of a
knowledge base and thus eases its maintenance, because we do not need to
assert explicitly what is already specified in the ontology.

However, it is sometimes assumed that being able to infer new facts from
the axiomatization using a reasoner is the main gain of an ontology, and that
without it, an ontology would not be “machine-readable.” That is not correct,
because the unique identifiers, provided for the conceptual elements, alone
improve the machine-readability of data. For example, simply using a
specific URI for expressing the relationship “knows” between two
individuals empowers a computer to find, aggregate, and present any such
statement in any Fried-of-a-Friend document. Same holds for the rich
libraries of datatype properties contained in eClassOWL (Hepp, 2006a)—
their formal semantics is constrained to what kind of datatype a value used in
a respective statement is, but their informal content is very rich.

In short, the ability to use computers to deduce additional facts based on
the axiomatic content of an ontology can be valuable and is interesting from
a research perspective. However, it is only one of at least six positive effects
of ontologies, and its share on improved interoperability has, to our
knowledge, so far not been quantitatively analyzed.

16 Chapter 1

2.6 Spotting logical inconsistencies

A side effect on the axiomatic specification of conceptual elements in an
ontology is that it increases the likelihood that modeling errors can be
spotted, because an inference engine is empowered to find logical
inconsistencies. Again, this is a potentially valuable contribution, but its
effect on more consistent conceptual models of domains still needs
quantitative evidence. Also, it must be stressed that only logical
inconsistencies can be spotted this way, while other types of modeling errors
remain undetected.

3. GRAND CHALLENGES OF ONTOLOGY
CONSTRUCTION AND USE

The main goal of ontology engineering is to produce useful, consensual,
rich, current, complete, and interoperable ontologies. In the following, we
discuss six fundamental problems of building and using ontologies in real-
world applications.

3.1 Interaction with human minds

Since ontologies are not for machines only, but are the glue between
human perception of reality and models of that reality in computers, it is
crucial that humans can understand an ontology specification, both at design
time and when using an ontology to annotate data or to express queries. This
problem has two major branches:

HCI challenge and visualization: It is difficult to develop suitable
visualization techniques for ontologies. For example, it has been investigated
to reuse popular modeling notations, namely from conceptual modeling, like
ERM, UML class diagrams, and ORM (Jarrar, Demey, & Meersman, 2003).
The advantage of this approach is a higher degree of familiarity, but there is
a danger that human users underestimate the differences between data
modeling and ontology engineering. In general, the larger the ontology and
the more expressive the underlying formalism, the more difficult is it to
provide a suitable ontology visualization. Chapter 2 discusses this problem
and current solutions in more detail.

Interplay between human languages and ontologies: Human language
is likely the most comprehensive phenomenon in which human thought,
including our abstractions, subjective judgments, and categories of thinking
manifest. Unfortunately, a large share of ontology researchers avoid natural
language both as a resource to be harvested when creating ontologies and as

1. Ontologies: State of the Art, Business Potential, and Grand Challenges 17

a modality for expressing the semantics (see also section 2.3). For successful
ontology projects, however, a tight integration with human language is
crucial. This is for example taken into account by the DOGMA-MESS
approach with a strong lexical component in the development process (de
Moor, De Leenheer, & Meersman, 2006). Also, ontology learning as the
attempt to deduce conceptual structures from lexical resources is getting
more and more attention, and respective expertise is gaining relevance. For
an overview of the field, see e.g. (Buitelaar, Cimiano, & Magnini, 2005).

3.2 Integration with existing knowledge organization
systems

A lot of existing knowledge is stored using traditional systems of
knowledge organization, for example, standardized hierarchical
classifications like eCl@ss1 and UNSPSC2 in the e-commerce domain or the
“International Classification of Diseases” (ICD-10)3 in the medical sector. If
we want to use ontology technology for increasing interoperability between
multiple such representations or increased access to existing data, we need to
build ontologies that are linked to those existing knowledge organization
systems (KOS). Also, reusing existing resources and consensus from those
systems can reduce the effort for building ontologies.

Several researchers have analyzed the complexity of deriving ontologies
from existing consensus in the form of informal thesauri and classifications,
e.g. thesauri to SKOS (van Assem, Malaisé, Miles, & Schreiber, 2006),
classifications into lightweight ontologies (Giunchiglia, Marchese, &
Zaihrayeu, 2006) and (Hepp & de Bruijn, 2007), or products and services
classification standards to OWL ontologies (Hepp, 2006b).

3.3 Managing dynamic networks of formal meaning

As ontologies are not static conceptual models of “eternal” truth, but
artifacts reflecting our gradual understanding of reality, we face the
difficulty of managing such dynamic networks of meaning (Fensel, 2001).
This creates at least three branches of problems:

Ontology evolution, i.e., dealing with change: We need to make sure
that ontologies are continuously updated so that they reflect the current state
of the respective domain. For example, product innovation leads to new
types of products and services, and advancement in research to new classes

1 http://www.eclass.de
2 http://www.unspsc.org
3 http://www.who.int/classifications/icd/en/

18 Chapter 1

of diseases and symptoms. For quickly evolving domains, it is an open
research question whether we can we build ontologies fast enough to reflect
those domains properly. See Chapter 5 for more on ontology evolution.

Interoperability between ontologies: If we have more than one single
ontology, the problem of data interoperability turns into a problem of
interoperability between multiple ontologies. Such is achieved by alignments
between ontologies, e.g. sets of statements of semantic relationships. Those
alignments are ontological commitments themselves, and there can be
multiple sets of statements of semantic relationships for different purposes.
See Chapter 6 for more on ontology alignments.

Integration of ontology construction and ontology usage: Due to their
high level of abstraction, ontologies mostly suffer from a very
disadvantageous decoupling between their construction and their usage. It is
very desirable that using ontologies for annotating instances and for
expressing queries is much more tightly integrated with the evolution of the
ontologies. For example, users spotting the need for a new element while
expressing a query should be able to do so. The current state is similar to
developing a dictionary without speaking the respective language, i.e.,
without continuously probing our assumptions about the semantics and
usage of words by communicating.

3.4 Scalable infrastructure

While relational database management systems (RDBMS) have reached a
high level of maturity and provide high performance and scalability even on
desktop computers, ontology repositories still fall short in those terms. In
fact, it is only recently that ontology repositories with some degree of
reasoning support have been released that can deal with larger ontologies or
large sets of instance data. However, quite clearly, users will not accept
falling behind the state of the art in scalability and performance when
adopting semantic technology.

There are two main branches of research in this field: First, determining
fragments of existing ontology languages that provide an attractive
combination of expressiveness and computational costs. The main idea is
that e.g. RDF-S is a too limited ontology language, while OWL DL
reasoning is too complex for many large-scale contexts.

The second is trying to combine reasoners with relational databases so
that the existing achievements in terms of scalability and performance can be
built on.

Chapter 4 summarizes the state of the art in this field.

1. Ontologies: State of the Art, Business Potential, and Grand Challenges 19

3.5 Economic and legal constraints

So far, research has mainly addressed the technical problems of ontology
usage, but largely ignored the economic and legal constraints. However, the
large deployment of ontology technology will require answers to those
questions, too.

Resource consumption: Does the gain in automation that the ontology
provides justify the resources needed to develop it? From another perspective,
do the technical problems that the ontology can help us solve outweigh the
problems we must master to create it? A first approach in that direction is the
work on cost estimation models for ontologies, see Chapter 7.

Incentive conflicts and network externalities: Is the incentive structure
for relevant actors in the process compatible with the required contributions?
For example, are those who must dedicate time and resources benefiting
from the ontologies? Moreover, ontologies exhibit positive network effects,
such that their perceived utility increases with the number of people who
commit to them (Hepp, 2007). This implies that convincing individuals to
invest effort into building or using ontologies is particularly difficult while
the user base associated with it is small or nonexistent.

Intellectual property rights: For many applications, we need ontologies
that represent existing standards. However, standards are often subject to
intellectual property rights (Samuelson, 2006). Establishing the legal
framework for deriving ontologies from relevant standards is thus nontrivial.

A more detailed discussion of these problems is in Hepp (2007).

3.6 Experience

Since ontologies are a rather new technology outside of academia, one
inhibitor to their wide usage is the lack of experiences from their application.
Such successful use cases can provide best practices and experiences, and
help assess the costs and benefits of new projects.

In this book, we present the collected experiences from three application
domains, see Chapters 8, 9, and 10. Also, there is another compilation of use
cases of semantic technology in the book Cardoso, Hepp, & Lytras (2007).

4. CONCLUSION

Managing ontologies and annotated data throughout their lifecycles is at
the core of semantic systems of all kinds. This begins with establishing a
consensual conceptualization of a domain and includes, often iteratively, a
wealth of operations on (or on the basis of) the resulting ontologies, and

20 Chapter 1

creates challenges in the elicitation, storage, versioning, retrieval, and
application. All such operations must support collaboration and may require
the involvement of the individuals defining and using the ontologies (i.e., the
committing communities), where human interpretation and negotiation of the
elicited knowledge is indispensable.

This eventually makes managing ontologies in large-scale applications
very difficult. While a lot of foundational research results have been
achieved and published in the past years, mostly in academia, the true
complexity of ontology management is still a major research challenge.

With this book, we aim at presenting a current summary of the state of
the art in the field. Part II of the book will discuss the infrastructure for
ontology management and related tools. Part III addresses the evolution of
ontologies and how alignments between multiple ontologies can be
produced. It concludes with a section that presents a cost estimation model
for ontology projects. Part IV summarizes the practical experiences from
ontology engineering and ontology management in three selected use cases
in e-banking, engineering in the automotive sector, and managing
competencies in the Dutch bakery domain.

ACKNOWLEDGEMENTS

The overall work on this book has been supported by the European
Commission under the project DIP (FP6-507483). This chapter was written
with partial support from the European Commission under the projects
SUPER (FP6-026850) and MUSING (FP6-027097), and from the Austrian
BMVIT/FFG under the FIT-IT project myOntology (grant no.
812515/9284). Martin Hepp has also support from a Young Researcher’s
Grant (Nachwuchsförderung 2005–2006) from the Leopold-Franzens-
Universität Innsbruck, which is thankfully acknowledged.

REFERENCES

v. Assem, M., Malaisé, V., Miles, A., & Schreiber, G. (2006). A Method to Convert Thesauri
to SKOS. Proceedings of the 3rd European Semantic Web Conference (ESWC 2006),
Budva, Montenegro, pp. 95–109.

Brachman, R. J. (1983). What IS-A Is and Isn’t: An Analysis of Taxonomic Links in
Semantic Networks. IEEE Computer, 16(10), pp. 30–36.

Buitelaar, P., Cimiano, P., & Magnini, B. (2005). Ontology Learning from Text: Methods,
Evaluation and Applications (Vol. 123). Amsterdam, The Netherlands: IOS Press.

Cardoso, J., Hepp, M., & Lytras, M. (Eds.). (2007). The Semantic Web. Real-World
Applications from Industry. Berlin etc.: Springer.

1. Ontologies: State of the Art, Business Potential, and Grand Challenges 21

Corcho, O., & Gómez-Pérez, A. (2001). Solving Integration Problems of E-commerce

Standards and Initiatives through Ontological Mappings. Proceedings of the Workshop on
E-Business and Intelligent Web at the Seventeenth International Joint Conference on
Artificial Intelligence (IJCAI-2001), Seattle, USA, pp. 1–10.

eClass e.V. (2006). eCl@ss: Standardized Material and Service Classification,
http://www.eclass-online.com/

Fensel, D. (2001). Ontologies: Dynamic networks of formally represented meaning,
http://sw-portal.deri.at/papers/publications/network.pdf

Ferrario, R. (2006). Who Cares about Axiomatization? Representation, Invariance, and
Formal Ontologies. Epistemologia, Special Issue on the Philosophy of Patrick Suppes, 2,
(forthcoming).

Furnas, G. W., Landauer, T. K., Gomez, L. M., & Dumais, S. T. (1987). The Vocabulary
Problem in Human-System Communication. Communications of the ACM, 30(11), pp.
964–971.

Giunchiglia, F., Marchese, M., & Zaihrayeu, I. (2006). Encoding Classifications into
Lightweight Ontologies. Proceedings of the 3rd European Semantic Web Conference
(ESWC 2006), Budva, Montenegro, pp. 80–94.

Gruber, T. R. (1993). A Translation Approach to Portable Ontology Specifications.
Knowledge Acquisition, 5(2), pp. 199–220.

Gruninger, M., & Lee, J. (2002). Ontology Applications and Design. Communications of the
ACM, 45(2), pp. 39–41.

Guarino, N., & Giaretta, P. (1995). Ontologies and Knowledge Bases. Towards a
Terminological Clarification. In N. Mars (Ed.), Towards Very Large Knowledge Bases:
Knowledge Building and Knowledge Sharing (pp. 25–32). Amsterdam: IOS Press.

Guarino, N., & Welty, C. A. (2002). Evaluating Ontological Decisions with OntoClean.
Communications of the ACM, 45(2), pp. 61–65.

Guarino, N., & Welty, C. A. (2004). An Overview of OntoClean. In S. Staab & R. Studer
(Eds.), The Handbook on Ontologies (pp. 151–172). Berlin: Springer.

Heindl, R. (1927). System und Praxis der Daktyloskopie und der sonstigen technischen
Methoden der Kriminalpolizei (3rd ed.). Berlin: Walter de Gruyter & Co.

Hepp, M. (2006a). eCl@ssOWL. The Products and Services Ontology,
http://www.heppnetz.de/eclassowl/

Hepp, M. (2006b). Products and Services Ontologies: A Methodology for Deriving OWL
Ontologies from Industrial Categorization Standards. Int’l Journal on Semantic Web and
Information Systems (IJSWIS), 2(1), pp. 72–99.

Hepp, M. (2007). Possible Ontologies: How Reality Constrains the Development of Relevant
Ontologies. IEEE Internet Computing, 11(7), pp. 90–96.

Hepp, M., & de Bruijn, J. (2007). GenTax: A Generic Methodology for Deriving OWL and
RDF-S Ontologies from Hierarchical Classifications, Thesauri, and Inconsistent
Taxonomies. Proceedings of the 4th European Semantic Web Conference (ESWC 2007),
Innsbruck, Austria, pp. 129–144.

Jarrar, M., Demey, J., & Meersman, R. (2003). On Using Conceptual Data Modeling for
Ontology Engineering. Journal on Data Semantics, LNCS 2800(I), pp. 185–207.

Lassila, O., & McGuinness, D. L. (2001). The Role of Frame-Based Representation on the
Semantic Web. Linköping Electronic Articles in Computer and Information Science, Vol. 6
(2001), No. 005, http://www.ep.liu.se/ea/cis/2001/005/

Menzies, T. (1999). Cost Benefits of Ontologies. intelligence, 10(3), pp. 26–32.
de Moor, A., De Leenheer, P., and Meersman, R. (2006). DOGMA-MESS: A meaning

evolution support system for interorganizational ontology engineering. Proceedings of the
14th International Conference on Conceptual Structures, Aalborg, Denmark, pp. 189–203.

22 Chapter 1

Oberle, D. (2006). Semantic Management of Middleware. New York: Springer.
Patel, C., Cimino, J., Dolby, J., Fokoue, A., Kalyanpur, A., Kershenbaum, A., et al. (2007).

Matching Patient Records to Clinical Trials Using Ontologies (IBM Research Report No.
RC24265 (W0705-111)). Almaden etc.: IBM Research.

RosettaNet. (2004). RosettaNet Technical Dictionary,
http://www.rosettanet.org/technicaldictionary

Samuelson, P. (2006). Copyrighting Standards. Communications of the ACM, 49(6), pp. 27–
31.

Schulten, E., Akkermans, H., Botquin, G., Dörr, M., Guarino, N., Lopes, N., et al. (2001). The
E-Commerce Product Classification Challenge. IEEE Intelligent Systems, 16(4), pp. 86–
89.

Sowa, J. (2007). Fads and Fallacies about Logic. IEEE Intelligent Systems, 22(2), pp. 84–87.
Wüster, E. (1991). Einführung in die allgemeine Terminologielehre und terminologische

Lexikographie (3rd ed.). Bonn: Romanistischer Verlag.

II. INFRASTRUCTURE

Chapter 2

ENGINEERING AND CUSTOMIZING
ONTOLOGIES
The Human-Computer Challenge in Ontology Engineering

Martin Dzbor and Enrico Motta
Knowledge Media Institute, The Open University, UK, {M.Dzbor, E.Motta}@open.ac.uk,
Tel. +44-1908-653-800; Fax +44-1908-653-169

Abstract: In this chapter we introduce and then discuss the broad and rather complex
area of human-ontology interaction. After reviewing generic tenets of HCI and
their relevance to ontology management, we give an empirical evidence of
some HCI challenges for ontology engineering tools and the shortcomings in
some existing tools from this viewpoint. We highlight several functional
opportunities that seem to be missing in the existing tools, and then look at
three areas that may help rectifying the identified gaps. We relate methods
from user profiling, large data set navigation and ontology customization into
a “triple stack,” which may bring tools for engineering ontologies from the
level of niche products targeting highly trained specialists to the ‘mainstream’
level suitable for practitioners and ordinary users. The work presented in this
chapter is based on the authors’ research together with other colleagues in the
context of the “NeOn: Lifecycle Support for Networked Ontologies” project.

Keywords: HCI; human-ontology interaction; NeOn; networked ontologies; ontology
customization; user study of ontology engineering tools

1. INTRODUCTION

Human-computer interaction (HCI) is a well-established and rich subject
that has an impact not only on those who develop computational systems,
but also on the users of such systems, the vendors, maintainers, and many
more stakeholders who are normally involved in designing and delivering
software and computer-based tools. At the centre of HCI as a science is the
core of its investigation: interactions. Note that this emphasis on an abstract
notion “interaction” does not reduce the importance of the users or push
them into a background.

26 Chapter 2

On the contrary, the term “interaction” is broader, and in general,
involves three constituting parts: the user, the technology, and the way they
work together. One can then study such phenomena as how the users work
with a particular technology, what the users prefer, how the technology
addresses given issues, etc. The purpose of this chapter is not to delve into
generic HCI issues applicable to any technology. We want to expand the
views of HCI to cover what we label as human-ontology interaction.

Human-ontology interaction can be seen as a subset of HCI issues that
apply to specific tasks and specific technologies. Our aim is to investigate
how users interact with the ontologies, in general, and with networked
ontologies, in particular, and how they do it in a realistic ontology lifecycle
scenario. While HCI is a subject almost as old as the computer science, the
specifics of interacting with ontologies were not considered in much depth.
Tools supporting ontological engineering are considered to be primarily
software tools, and thus, it is presumed that general findings of the HCI
practitioners also apply to ontologies.

To some extent, this is true; however, design, engineering and
subsequently maintenance of ontologies are indeed specific ways to interact
with the technology. In other words, the change in the activity implies a
change in the entire interaction. Thus, an action that may look similarly to
other software systems (e.g. opening a file) may acquire semantically very
specific meaning in the context of a particular activity (in our case, ontology
engineering).

In this chapter, we look at several different aspects of how a user may
interact with ontologies in a varied sort of ways. The first part of the chapter
is concerned with a user study that we carried out in order to improve our
understanding of the level of user support provided by current ontology
engineering tools in the context envisaged by the NeOn project1. That is, in a
scenario when ontology engineers are developing complex ontologies by
reuse, i.e., by integrating existing semantic resources.

While the existing empirical work on exploring HCI aspects of the
ontology engineering tools points to several problems and challenges, we
decided to conduct a new study, because none of the studies reviewed in
section 2.1 provided sufficient data to drive the development of the ontology
engineering tools addressing the NeOn scenario. In particular, the use of
tools by ordinary users, the emphasis on ontology reuse and the embedment
of the study in a real-world engineering task.

A complementary view to this empirical user study is presented in the
latter part of the chapter: exploring the HCI challenge with more analytic

1 “NeOn: Lifecycle support for networked ontologies” is a large-scale integrated project co-

funded by the European Commission by grant no. IST-2005-027595; more information on
its focus, outcomes and achievements so far can be found on http://NeOn-project.org.

2. Engineering and Customizing Ontologies 27

lenses, and focusing on a variety of tools that were specifically designed to
support ontological engineering, or could be reused with ontologies in a
serendipitous manner. With this view in mind we consider several
approaches, technologies, and tools to illustrate various aspects of where
user interaction with ontologies becomes somewhat specific and different
from using other software systems and tools.

Before going more in depth, let us introduce the basic terminology first.
In order to work in a structured manner, we separate the terms that
traditionally come from the HCI domain from the terms that are typical for
ontology engineering.

1.1 Terms frequently used in HCI

In this section we present common and established meanings of terms
and issues that are usually mentioned in connection with user interaction in
general. The purpose of this brief glossary is twofold: (i) to introduce terms
that are used in the subsequent sections of this chapter to those practitioners
with less background in traditional HCI, and (ii) to differentiate between
terms that are often used interchangeably by lay persons. We are not
defining here any terms related to ontology engineering in general, as these
have a broader scope of validity than the chapter on HCI challenges, and are
covered elsewhere in the book.

• Accessibility: In general, this term reflects the degree to which a given
system is usable by different users. It can be expressed in terms of ease
with which to access certain features or functions of the system, together
with the possible benefits such access may bring to the user. Often this
term is interpreted in the sense of ‘enabling people who are physically
disabled to interact with the system.’ This is a slightly unfortunate
emphasis on one specific motivation for pursuing accessibility. In a non-
disabled sense, accessibility may include aspects like appropriate
language, jargon, level of detail, choice of action, etc.

• Customization: In the computer science this term refers to the capability
of users to modify or otherwise alter the layout, appearance and/or
content of information with which they want to interact. This term is
often used together with personalization (see also explanation of term
‘profile’ below). In this deliverable we shall see customization as an
ability to adapt user interfaces and tools so that they fit a particular
user’s needs and accessibility constraints (see also term ‘accessibility’
above for some objective, explicit criteria that may be customized).

• End user: Popularly used to describe an abstract group of persons who
ultimately operate or otherwise use a system — in computing, where this

28 Chapter 2

term is most popular, the system corresponds to a piece of software. The
abstraction is expressed in terms of a relevant sub-set of a user’s
characteristics (e.g. his/her technical expertise, prior knowledge, task,
objective, skill, etc.) — leading to such user categories as knowledge
engineers, developers, administrators, etc.

• Graphical User Interface (GUI): GUI is a type of user interface that
came to prominence in computer science in the 1980s. The hallmark of
this type is the use of graphical images (so called widgets), texts and
their managed appearance on the computer screen to represent the
information and actions available to the user. Another hallmark is that
the user’s actions are performed by directly manipulating the graphical
elements (widgets) on the screen. GUI is often defined in contrast with
command-based, text-only or terminal-based user interfaces.

• Localization: In the context of computing and HCI, localization is seen
as the adaptation of an object or a system to a particular locality. A
typical example is where a locality is defined in terms of different
languages (e.g. English, Spanish, etc.), and the system is expected to
translate messages and other aspects of its UI into the language suitable
for or selected by the user. Thus, localization may be seen as a
customization of a tool for a specific country, region or language group.
In some literature, this term is used jointly with term
‘internationalization.’ However, language is only one (albeit most
visible) aspect of the system UI that can be translated to the local
customs. Other aspects that may need amendments include issues like
time and date formatting, decimal number formatting, phone and
postcode formatting, and locally used units of measure (e.g. feet, meters,
etc.) Less common adaptations are in the use of colors, layouts and
imaging appropriate to a particular locality.

• Modality (of user interface): A path or communication channel
employed by the user interface to accomplish required inputs, outputs
and other activities. Common modalities include e.g. keyboard, mouse,
monitor, etc.

• (User) Preference: This term represents a real or imagined choice
between alternatives and a capability to rank the alternatives according
to some criterion. In computer science, this term is typically used in the
sense that users choose among alternative user interactions, user
interface components and/or paths. In computing, user preferences are
often based on the utility (value) of the available alternatives to the
particular user, in a particular situation or task.

• (User) Profile: a term seen in the context of computing as a way to
describe some user properties that are relevant for a particular task and
can help in tailoring information delivery to the specific user. Note that

2. Engineering and Customizing Ontologies 29

‘user’ may mean a concrete individual person as well as an abstract user
(e.g. a group or type).

• Usability: A degree to which the design of a particular user interface
takes into account human needs defined in terms of psychology or
physiology of the users. Usability looks at how effective, efficient and
satisfying the user interface (and the underlying application) is.

• User experience: Broadly, this term describes an overall experience,
satisfaction and/or attitude a user has when using a particular system. In
computing, this term is often used interchangeably with terms like
usability and sometimes accessibility.

1.2 About ontological engineering

In the early 1990’s, a group of Artificial Intelligence (AI) and database
(DB) researchers got together to define a standard architecture stack for
allowing intelligent systems to interoperate over a knowledge channel and
share data, models, and other knowledge without sharing data schema or
formats. This group comprised Tom Gruber — the person who is widely
credited with clarifying a definition of ontology for the AI community and
for promoting the vision of ontologies as enabling technology:

“In the context of knowledge sharing, I use the term ontology to mean a
specification of a conceptualization. That is, an ontology is a description
(like a formal specification of a program) of the concepts and
relationships that can exist for an agent or a community of agents. This
definition is consistent with the usage of ontology as set-of-concept-
definitions, but more general.” (Gruber 1993a; Gruber 1993b)

Ontologies are designed artifacts, similar to cars, desks or computers. As
such, they always have a purpose, they are engineered for something. In the
original vision of Tom Gruber, ontologies were artifacts facilitating sharing
and interchange of knowledge, or making commitments to particular
meanings. While an ontology may be in principle an abstract conceptual
structure, from the practical perspective, it makes sense to express it in some
selected formal language to realize the intended shareable meaning.

Such formal languages then enable the negotiation of formal
vocabularies, which, in turn, may be shared among parties in the knowledge
sharing interaction without being dependent on either the user/agent or its
context. One example of such a vocabulary may be description logic that
allows us to make statements holding for some or all entities in a given
world satisfying a given condition.

From the point of view of this book (and chapter), we often align the
ontology management and engineering with the actual design, creation and

30 Chapter 2

overall interaction with such formal vocabularies. If we take the Web
Ontology Language (OWL2) as the current preferred formal vocabulary, then
ontology engineering is often seen as a synonym to designing and coding
conceptual commitment about the world or a particular problem in this
language. Thus, for the purpose of this chapter, user challenge in engineering
OWL ontologies is broadly definable as a user interaction with a particular
software product, code, OWL model, OWL-based tool, technique, etc.

2. USERS IN ONTOLOGICAL ENGINEERING

In order to illustrate and ground the issues users are facing during the
process of ontology design, engineering and management, this section
includes extracts from a larger user study that has been conducted in the
context of gathering and analyzing requirements in the NeOn project. The
following sub-sections are based on our earlier workshop publication
(Dzbor, Motta et al. 2006).

The existing empirical work on exploring HCI aspects of the ontology
engineering tools highlights several problems with ontology engineering
tools. However, at the beginning of the NeOn project we felt that there was a
need to conduct a novel study, as none of the studies mentioned in section
2.1 provided the kind of data that can be used as a baseline to inform the
development of the next generation ontology engineering tools.

2.1 Motivation and background

Some work on evaluating tools for ontology engineering has been done
in the past. For example, Duineveld, Stoter et al. (2000) observed that the
tools available in the time of their study (around 1999) were little more than
research prototypes with significant problems in their user interfaces. These
included too many options for visualizing ontologies, which tended to
confuse the user and hinder navigation. Moreover, the systems’ feedback
was found to be poor, which meant a steep learning curve for non-expert
users. Finally, most tools provided little support for raising the level of
abstraction in the modelling process and expected the user to be proficient in
low-level formalisms.

Pinto, Peralta et al. (2002) evaluated Protégé, one of the leading ontology
engineering tools currently in use (Noy, Sintek et al. 2001), in several tasks,
from the perspective of a power user. The authors found the system intuitive
for expert knowledge engineers, as long as the operations were triggered by

2 Specification of OWL as a W3C recommendation is on http://w3.org/TR/owl-ref

2. Engineering and Customizing Ontologies 31

them (e.g. knowledge re-arrangement). However, difficulties arose when
assistance from the tool was expected; e.g. in inference or consistency
checks. Weak performance was also noted in language interoperability. In
another survey, Fensel and Gómez-Pérez (2002) also noted issues with tool
support for operations on ontologies beyond mere editing (e.g. integration or
re-use). In particular, the authors emphasized the limited ‘intelligence’ of
current tools — e.g. no possibility to re-use previously used processes in
current design. Tools expected the user to drive the interaction, with the tool
imposing constraints rather than adapting itself to users’ needs.

Yet another study by Storey, Lintern et al. (2004) focused on a fairly
narrow aspect of visualization support in Protégé and its customization
models are too complex and do not reflect users’ models of what they would
normally want to see. Similar observations were made of the users having
difficulties with description logic based formalisms in general (Kalyanpur,
Parsia et al. 2005). Again, tools expected detailed knowledge of intricate
language and logic details, and this often led to modelling errors.

As we mentioned earlier in the introduction, the existing empirical work
on exploring HCI aspects of the ontology engineering tools highlighted
several problems with ontology engineering tools. We conducted a new
study, because none of the studies mentioned above provided the kind of
data that can be used to inform the development of the ontology engineering
tools envisaged by NeOn. Specifically, the studies did not satisfactorily
address the following key concerns:

• “Normal” users vs. “Power” users. As ontologies become an
established technology, it makes less sense to focus only on highly
skilled knowledge engineers. There are so many organizations
developing ontologies that it seems safe to assert that indeed most
ontologies are currently built by people with no formal training in
knowledge representation and ontology engineering. Therefore, it is
essential to conduct studies, which focus on “normal users,” i.e., people
with some knowledge of ontologies, but who are not classified as
“power users.”

• Emphasis on ontology reuse. We adopt the view that ontologies will be
networked, dynamically changing, shared by many applications and
strongly dependent on the context in which they were developed or are
used. In such scenario it would be prohibitively expensive to develop
ontologies from scratch, and the re-use of existing, possibly imperfect,
ontologies becomes the key engineering task. Thus, it makes sense to
study the re-use task for OWL ontologies, rather than focusing only on a
narrow activity (e.g. ontology visualization or consistency checking).

• Evaluating formal ontology engineering tasks. Studies reported earlier
focused on generic tool functionalities, rather than specifically assessing

32 Chapter 2

performance on concrete ontology engineering tasks. This creates two
problems: (i) the results are tool-centric, i.e., it is difficult to go beyond a
specific tool and draw generic lessons in terms of HCI on how people do
ontology engineering tasks; (ii) by assessing the performance of our
users on concrete tasks using OWL ontologies, we acquire robust,
benchmark-like data, which (for example) can be used as a baseline to
assess the support provided by other tools (including those planned in
NeOn).

2.2 Overview of the observational user study

We conducted an observational study rather than an experiment to
capture user needs and gaps in the tool support, rather than merely compare
different tools. As mentioned earlier, NeOn is concerned with several facets
of networked ontologies, and many of these facets are currently supported to
a very limited extent. This lack of tools and techniques makes it difficult to
assess the actual user performance in any of these tasks. However, it enables
us to acquire generic requirements and insights on a broader ontology
engineering task or process.

Ontology is, by definition, a shared artefact integrating views of different
parties (Gruber 1993a). One form of integration used in this study was
temporal, where an agent re-used previously agreed ontologies, perhaps from
different domains. All studied ontologies were public; all were results of
principled engineering processes and knowledge acquisition, and they all
modelled domains comprehensible to a ‘normal user.’ The table shows some
statistical information on the OWL ontologies included in the study.

Table 2-1. Descriptive features of the ontologies used in the evaluation study: numbers of
primitives classified as Cl(asses), Pr(operties), and Re(strictions)
Ontology Cl Pr Re Notes
Copyright 85 49 128 Mostly cardinality & value type restrictions, some properties

untyped
[http://rhizomik.net/2006/01/copyrightontology.owl]

AKT Support 14 15 n/a All properties fully typed, no axioms
[http://www.aktors.org/ontology/support]

AKT Portal 162 122 130 10 classes defined by equivalence/enumeration, most
properties untyped
[http://www.aktors.org/ontology/portal]

Two environments were used — Protégé from Stanford University3 and

TopBraid Composer from TopQuandrant4— these satisfied the initial

3 Extensive details on the Protégé project and tool are available to an interested reader on

http://protege.stanford.edu

2. Engineering and Customizing Ontologies 33

requirements from ontologies (e.g. on OWL fragment or visualization
features). We worked with 28 participants from 4 institutions (both academic
and industrial). Participants were mixed in terms of different experience
levels with designing ontologies and with different tools. Each person
worked individually, but was facilitated by a member of the study team.
Participants were expected to have knowledge of basic OWL (e.g. sub-
classing or restrictions), while not necessarily being ‘power users.’ They
were recorded with screen capture software Camtasia, and at the end they
filled in a questionnaire about their experiences with ontology integration.

2.2.1 Evaluation methodology

In our investigation of the ontology engineering environments, we opted
for a formative evaluation (Scriven 1991). This choice was made mainly to
inform design of new OWL engineering tools in the context of NeOn. Two
constraints were observed: (i) gathered data shall not be tool-specific (it was
not our objective to prove which one tool was best); and (ii) while generic
tool usability was considered important, measures were expected not to be
solely usability-centric. In terms of what was analyzed, we selected the
following levels of analysis (Kirkpatrick 1994): (i) user’s satisfaction with a
tool, (ii) effectiveness of a tool in achieving goals, and (iii) behavioural
efficiency. In our study, these categories took the form of questions
exploring usability, effectiveness, and efficiency categories, to which we
added a generic functional assessment category.

Our questionnaire reflected situations that typically appear in the
literature correlated with enhancing or reducing effectiveness, efficiency,
usability or user satisfaction (Shneiderman and Plaisant 2004), and covered
these situations by 36 questions. The remaining 17 questions inquired about
various functional aspects considered relevant to the NeOn vision; including
ontology re-use, visualization, contextualization, mapping, reasoning, etc.

The questionnaire included both open and closed (evaluative) questions.
The former asked for opinions; the latter used a Likert scale ranging from
very useful (+1) to very poor (–1). Each question was then expressed
frequencies and counts — largely in the context of open, qualitative items
and observations. Positively and negatively stated questionnaire items were
interspersed to avoid the tendency of people to agree with statements rather
than disagree (Colman 2001). Nevertheless, this tendency towards agreeing
appeared during analysis; as was discussed in our preliminary report (Dzbor,
Motta et al. 2006).

4 More about TopBraid Composer can be found on http://www.topbraidcomposer.com/

34 Chapter 2

2.2.2 User tasks

Participants were given three tasks considering different ways of
integrating ontologies into a network. In Task 1, they were told that the
Copyright ontology did not formalize temporal aspects, and had to be
augmented with the relevant definitions from other ontologies (e.g. AKT
Support). The objective was to review the three given ontologies, locate the
relevant classes (i.e. CreationProcess and Temporal-Thing), import
ontologies as needed, and assert that CreationProcess is a subclass of
Temporal-Thing.

Task 2 was motivated by pointing to a western-centric notion of any right
being associated only with a person, which excluded collective rights.
Participants were asked to review concept copyright:Person, and replace its
use with deeper conceptualizations from the AKT Portal and AKT Support
ontologies. In principle, the task asked people to express two types of
restrictions on property ranges:

• simple: e.g. for concept Economic-Rights introduce statement
rangeOf (agent , Legal-Agent);

• composite: e.g. state that
rangeOf (recipient , (Generic-Agent AND (¬ Geo-Political))).

Task 3 asked people to re-define concept copyright:Collective so that

formal statements could match an informal description. Participants were
told to make amendments in the base — Copyright ontology, rather than to
the other two. We expected they would first create new local sub-classes for
the concept copyright:Collective, and then make them equivalent to the
actual AKT classes. Task 3 also comprised a definition of a new property
(e.g. copyright:hasMember) with appropriate domain and range, together
with its restriction for class copyright:Collective, so that a collective is
defined as containing min. 2 persons.

2.3 Findings from the user study

This section summarizes some findings from our study. For selected
categories of measures we give a general summary of observations across
the whole population, followed by commenting on differences (if any)
between two common denominators of user performance in knowledge-
intensive tasks — the choice of and the expertise with the tool. Particularly
interesting is to look at how efficient people felt in different tasks, how they
were assisted by the help system or tool tips, how the tools helped to
navigate the ontologies or how easy it was to follow the formalisms used in

2. Engineering and Customizing Ontologies 35

definitions. Table 2-2 shows general observations, and Table 2-3 compares
features where differences between tools were observed.

The efficiency of the two tools was approximately the same. When asked
about efficient handling of ontology dependencies and navigating through
them, Protégé users thought they were significantly less efficient. Many
users were not happy with the abstract syntax of the axiom formulae, which
was not helped by the inability to edit more complex restrictions in the same
windows and wizards as the simple ones.

Table 2-2. Selection of a few general observations across population
Measure/question –1 0 +1 Total Mean
providing sufficient information about ontologies 32% 55% 13% 29 –0.172
support provided by documentation, help 60% 40% 0% 16 –0.500
usefulness of the tool tips, hints, ... 50% 46% 4% 27 –0.423
subjective time taken for task 2 25% 55% 20% 31 –0.065
subjective time taken for task 3 6% 56% 38% 31 +0.300

Table 2-3. Comparison of attitudes between tools and expertise groups (TB: TopBraid, Pr:
Protégé, Be: less experienced, Ex: expert); significance threshold: χ2=5.99 at p=0.05
Measure/question Type Outcome χ2 Sign
help with handling ontology dependencies tools TB (0.0) vs. Pr (–0.37) 7.65 yes
useful visualization & ontology navigation
facilities

tools TB (–0.33) vs. Pr (–0.63) 6.00 yes

handling ontology syntax / abstract syntax tools TB (+0.40) vs. Pr (–0.07) 2.33 no
ease/speed of carrying out integrations experience Le (–0.21) vs. Ex (+0.27) 9.75 yes
level of visualization and navigation support experience Le (–0.69) vs. Ex (–0.40) 2.40 no
ontology representation languages, abstract
syntax, etc.

experience Le (–0.22) vs. Ex (+0.23) 3.64 no

One qualitative feature in both tools concerns the depth of an operation in

the user interface. Subjectively, 32% participants felt they had an explicit
problem with finding an operation in a menu or workspace. The main
‘offenders’ were the import function (expected to be in File � Import...
menu option) and the in-ontology search (which was different from the
search dialog from Edit � Find... menu option).

Expertise seemed to have minimal effect on the assessment of the
efficiency dimension. Both groups concurred that while a lot of information
was available about concepts, this was not very useful, and the GUI often
seemed cluttered. They missed a clearer access to ‘hidden’ functions such as
defining equivalence or importing ontology. Non-experts saw themselves
inefficient due to lack of visualization and navigation support, and also due
to the notation of abstract DL-like formalism. Experts were at ease with the
formats; non-experts considered support for this aspect not very good.

The overwhelming demand was for complying with common and
established metaphors of user interaction. A quote from one participant sums

36 Chapter 2

this potential source contributing to inefficiency: “More standard
compliance and consistency. The search works differently … usual keyboard
commands ... don’t always work…”

In addition to the efficiency of the existing ontology management tools,
two aspects were evaluated with respect to user experiences: (i) usability of
the tool (which included accessibility and usefulness), and (ii) overall user
satisfaction with the tool. The latter included comments regarding user
interface intuitiveness, acceptability, customization, and so on.

As Table 2-4 shows, responses in this category are generally negative;
participants considered the existing support as “very low” or “not very
good.” Almost invariably, they were dissatisfied with the role of
documentation, help system, tool tips, and various other tool-initiated hints.
Support for tool customization — i.e. either its user interface or
functionality — was also inadequate. A common justification of the low
scores was (among others) the lack of opportunity to automate some actions,
lack of support for keyboard-centric interaction, lack of support for more
visual interactions. As can be seen from these examples, the reasons were
quite diverse, and to some extent depended on the user’s preferred style.

Table 2-4. Selection of a few general observations across population
Measure/question –1 0 +1 Total Mean
usability/helpfulness of the tooltips, hints, ... 50% 46% 4% 27 –0.423
usability of tool’s help system 60% 40% 0% 16 –0.500
support for customization of the tool, its GUI or functionality 48% 44% 8% 25 –0.400
usability of handling ontology dependency support 31% 66% 3% 27 –0.259
visualization of imports, constraints & dependencies 58% 39% 3% 28 –0.536
support for [partial] ontology import 62% 14% 4% 29 –0.739
useful tool interventions in establishing integrations 48% 52% 0% 26 –0.480

One emerging trend on the tools’ usability was that too many actions and

options were available at any given point during the integration tasks. On the
one hand, this refers to the amount of information displayed and the number
of window segments needed to accommodate it. An example of this type of
usability shortcoming is the (permanent) presence of all properties on screen.
On the other hand, while constant presence can be accepted, it was seen as
too rigid — e.g. no filtering of only the properties related to a concept was
possible. In fact 32% claimed that unclear indication of inheritance and
selection was a major issue, and further 14% reported being unable to find
all uses of a term (e.g., property or concept label) in a particular ontology.
Other comments related to usability are summarized below:

• unclear error messages and hints (e.g. red boundary around an incorrect
axiom was mostly missed);

2. Engineering and Customizing Ontologies 37

• proprietary user interface conventions (e.g. icons looked differently,

search icon was not obvious, some menu labels were misleading);
• lack of intuitiveness (e.g. finding an operation, flagging a concept in the

ontology so that it does not disappear, full- vs. random-text search);
• inconsistent editing & amending of terms (e.g. while “subClassOf” was

visible at the top level of the editor, “equivalentTo” was hidden)

Table 2-5. Comparison of attitudes between tools and expertise groups (TB: TopBraid, Pr:
Protégé, Be: less experienced, Ex: expert); significance threshold: χ2=5.99 at p=0.05
Measure/question Type Outcome χ2 Sign.
level of overall satisfaction with the tools tools TB (+0.10) vs. Pr (–0.19) 2.67 no
overall satisfaction with tool’s GUI environment tools TB (+0.10) vs. Pr (–0.24) 3.14 no
satisfaction with handling dependencies in
ontologies

tools TB (0.0) vs. Pr (–0.37) 7.65 yes

satisfaction with visualization and navigation
support

tools TB (–0.33) vs. Pr (–0.63) 6.00 yes

ease/speed of carrying out integrations tools TB (+0.50) vs. Pr (+0.10) 5.85 no
effort to get acquainted with the tool experience Be (–0.27) vs. Ex (+0.12) 3.02 no
satisfaction with support for interpreting
inferences

experience Le (0.0) vs. Ex (+0.07) 2.40 no

support for multiple ontology representation
formats

experience Le (–0.22) vs. Ex (+0.23) 3.64 no

As shown in Table 2-5, a significant difference of opinion was in the

overall satisfaction with the tools, their design and intuitiveness, where it
was more likely that people complained about Protégé than TopBraid. In this
context, people tended to be more positive in the abstract than in the specific.
Responses to specific queries were negative (between –0.500 and –0.100),
yet overall experiences oscillate between –0.111 and +0.100. As we
mentioned, the overall satisfaction with the TopBraid environment was more
positive (some possible reasons were discussed above).

One case where experience weighed strongly on less experienced users is
the tool intuitiveness. Probably the key contributing factors were the
aforementioned non-standard icons, lack of standard keyboard shortcuts,
ambiguous operation labels, and an overall depth of key operations in the
tool. Less experienced users also had issues with basic features — e.g.
namespaces and their acronyms, or ontology definition formalisms. The
issue with formalisms is partly due to the inability of the tools to move from
an OWL- and DL-based syntax to alternative views, which might be easier
in specific circumstances (such as modification of ranges in Task 2).
Experienced users missed functionalities such as version management —
here less experienced users were probably not clear in how versioning might
actually work in this particular case.

38 Chapter 2

2.4 Lessons learned from the user study

Technology (such as OWL), no matter how good it is, does not guarantee
that the application for its development would support users in the right tasks
or that the user needs in performing tasks are taken on board. At a certain
stage, each successful tool must balance the technology with user experience
and functional features (Norman 1998). This paper explored some
persevering issues with OWL engineering tools that reduce the appeal and
adoption of otherwise successful (OWL) technology by the practitioners.

Although the tools made a great progress since the evaluations reported
in section 2.1, issues with user interaction remain remarkably resilient. The
effort was spent to make the formalisms more expressive and robust, yet
they are not any easier to use, unless one is proficient in the low-level
languages and frameworks (incl. DL in general and OWL’s DL syntax in
particular). Existing tools provide little help with the user-centric tasks — a
classic example is visualization: There are many visualization techniques;
most of them are variations of the same, low-level metaphor of a graph. And
they are often too generic to be useful in the users’ problems (e.g. seeing
ontology dependencies or term occurrences in an ontology).

Table 2-6 highlights a few gaps between what the current tools provide
and what people see as useful for framing problems in a more user-centric
way. Some ‘wishes’ (white rows) already exist; e.g. Prompt (Noy and Musen
2003) for version comparison, but perhaps our findings may further improve
design of the existing OWL engineering tools.

For instance, identification of frequently used operations and their
correlations with errors and mistakes may provide us with opportunities to
target the support towards most visible sources of user dissatisfaction. The
most frequent steps in OWL development are the actual coding of definitions
and import of ontologies (unsurprisingly), but, surprisingly, also search
(71% users), re-conceptualization of restrictions and editing of logical
expressions (both 54%), and locating terms in ontologies (46%). Compare
these operations with the situations requiring assistance from facilitators (in
Table 2-7).

2. Engineering and Customizing Ontologies 39

Table 2-6. User attitudes to some functional features missing in existing tools (grey rows) and
to some proposed extensions (white rows)

Current presence (grey) vs. wished-for feature User attitude
Existing support for ontology re-use –0.097 (not very good)
Support for partial re-use of ontologies –0.739 (very poor)
� flag chunks of ontologies or concept worked with +0.519 (would be very useful)
� hide selected (irrelevant?) parts of ontologies +0.357 (would be useful)
Existing support for mappings, esp. with contextual boundaries –0.065 (not very good)
Management and assistance with any mappings –0.480 (not very good / poor)
� query ontology for items (instead search/browse) +0.433 (would be useful)
� compose testing queries to try out consequences of mappings +0.045 (would be possibly useful)
Existing support for versioning, parallel versions/alternatives –0.200 (not very good)
Existing visualizing capabilities & their adaptation –0.536 (very poor)
� mechanism to propagate changes between alternative versions +0.519 (would be very useful)
� compare/visualize different interpretations/versions +0.700 (would be very useful)
� visualize also on the level of ontologies (not just concepts) +0.357 (would be useful)

Table 2-7. Observations of issues with OWL engineering and user interaction
Observation Frequency % affected Examples
Syntactic axiom check � user not alerted
or not noticing

21x 64.3% Buttons/icons after axioms misleading;
Single/double clicks to select, edit, etc

Testing & understanding (inference,
meaning)

26x 64.3% Which inference is the right one?;
How to check the intended meaning(s)?

Translate/compose logical operation (e.g.
equivalence)

37x 60.7% How to start complex axiom?;
Stepwise definition?

Dialogs, buttons,... (confusion,
inconsistency,…)

43x 89.1% Buttons/icons after axioms misleading;
Single/double clicks to select, edit, etc.

Searching for the class (partial text search
on labels)

25x 64.3% Label starts with X different from label
contains X; namespaces in search?

Functionality unclear (drag&drop, error
indication, alphabetic view)

26x 60.7% Am I in the edit mode?;
Where is it alerting me about error?

One example we identified is the correlation between an incorrect logical

conceptualization and confusion caused by ambiguous labels or dialogs.
Other correlations were between problems with importing an ontology and
absence or semantic ambiguity of appropriate widgets in the workspace, and
between difficulties with definitions and the failure of tools to alert users
about automatic syntactic checks (e.g. on brackets). The translation of a
conceptual model of a restriction into DL-style formalism was a separate
issue: 70% were observed to stumble during such definitions. From our data,
we suggest considering multiple ways for defining and editing axioms (to a
limited extent this partly exists in Protégé). Any way, DL may be good for
reasoning, but it is by no means the preferred “medium for thinking” (even
among ontology designers). This is not a novel finding, similar observations
were made for other formalisms and their relationship to informal thought
generation (Goel 1995).

40 Chapter 2

Another issue is the gap between the language of users and language of
tools; a high number of users was surprised by syntactically incorrect
statements. In 64.3% sessions at least one issue due to syntax (e.g. of
complex restrictions) was observed. Because of these minor issues they had
to be alerted to by a facilitator, people tended to doubt results of other
operations (e.g. search or classification) if these differed from what they
expected. Lack of trust is problematic because it puts the tool solely in the
role of a plain editor, which further reduces tool’s initiative. In an attempt to
restore ‘user trust,’ some tools (e.g. SWOOP) move towards trying to justify
their results (Kalyanpur, Parsia et al. 2005).

The extensive use of features in the tools is also an issue increasing
complexity of user interaction. Both tested tools showed most of possibly
relevant information on screen at all times. There was little possibility to
filter or customize this interaction. The granularity at which tools are
customizable is set fairly high. For instance, one can add new visualization
tabs into Protégé or use a different (DIG-compliant) reasoning tool, but one
cannot modify or filter the components of user interaction.

Clearly, there is some way to go to provide the level of support needed
by ‘normal’ users engineering OWL ontologies. Our analysis highlighted
some shortcomings, especially the flexibility and adaptability of user
interfaces and lifting the formal abstractions. With this study, we obtained a
benchmark, which we plan to use to assess the support provided by our own
future tools in 18–24 months. Obviously, we intend to include other OWL
engineering tools (e.g. SWOOP or OntoStudio) to make the study robust.

3. USER INTERACTION WITH ONTOLOGIES

In the previous section we mostly considered one particular category of
the users with respect to ontologies; namely, those users who want to author,
design and amend ontologies as a part of some integrative task. This is an
important group of users; however, these are not necessarily the only users
who may have a need to interact with networked ontologies. The issue of
interacting with ontologies effectively and efficiently is much more pressing
with less experienced users, who carry out an ad-hoc, occasional ontology-
related task — as shown, to some extent by our study reported in section 2.

Therefore, in this section we explore the problem of user interaction with
ontologies more in depth, from several angles.

2. Engineering and Customizing Ontologies 41

3.1 Configurable user interfaces

One of the findings in the user study we briefly described in section 2.3
was pointing to the fact that the ontology engineering environments tend to
be reasonably modular, but they are essentially built alongside “one size fits
all” strategy. In reality, such a strategy is rare among the successful software
products. As users within the corporate intranets or outside of companies
take on different roles, they come across and emphasize different business
needs from, in principle, the same information content. Subsequently, they
typically expect the tools of their trade would somehow reflect those
different business needs.

One of the most often mentioned features of a new software product is an
easy customization of its user-facing components. We explore this theme in
the second half of the chapter on HCI challenges in ontology engineering.
The quote from a software company’s catalogue (anonymized by the
authors) below summarizes the point:

[Our product] provides an easy to configure user interface enabling you
to meet diverse business needs across your enterprise, as well as support
localization. [Among other functionalities, the product supports] menu
localization and support for international languages, enabling and
disabling functions for users based on their permissions, […]

Users involved in ontology-driven production of information and
knowledge need to be equipped with a range of software configurations and
diverse user interfaces to deliver the outcomes of their work as effectively
and efficiently as possible. There are two broad strategies how one can
match the tools to the needs:

1. different tools for different users and different purposes;
2. different configurations of one tool or toolkit for different users or

purposes.

The two strategies are not mutually exclusive; very often we find that
users rely on a limited range of tools, and then may have different,
specialized configurations for some of those tools. Let us briefly consider the
key advantages and disadvantages of the above approaches: In the former
situation, tools are well defined but apparently independent of each other.
This may lead to a proliferation of a large number of highly specialized
tools, something that is overwhelming and unlikely to alleviate the user’s
confusion. Moreover, with specialized tools, there is an increasing risk of
them being mutually less compatible or compatible on a rather cumbersome
level (e.g. import/export mechanism of various graphical editors is a good
example of this compatibility issue). The main advantage is that the user will

42 Chapter 2

only get to work with tools and interfaces s/he necessarily needs to carry out
given tasks, and nothing more.

In the latter situation, we tend to see more complex and multi-functional
tools that can exhibit a variety of user interfaces and user interaction
components in different situations. In many tools of this type, we see an
aggregation of functionalities and a fairly seamless switching between many
tasks the user may carry out at some point. This is essentially a “one-stop
shop” approach where the user has (almost) everything they may ever need
already inside the tool, and only needs to activate different configurations. A
typical example of this would be editors like Microsoft Word, and its ‘rich
document editor’ face, as opposed to (say) ‘content revision’ face or ‘mail
merge and distribution’ face.

Formally, these notions were explored by Shneiderman (2000) who
introduced so-called universal usability. While this rather broad issue is
clearly beyond the scope of this chapter, Shneiderman points to several
factors that may affect the tool usability. These are factors that vary from
one user to another, and hence trigger a degree of adaptation to the user
interface. Importantly, Shneiderman highlights many common factors that
are not always recognized as valid reasons for UI customization. For
example, he talks about technological variety (i.e. the need to support a
range of software and hardware platforms, networks, etc.), about gaps in user
knowledge (what users know, what they should know, etc.), or about
demographic differences (skills, literacy, income) or environmental effects
(light, noise, etc.)

One approach to achieving more universal usability of a tool is to
introduce user interface adaptation into the loop. The rationale is that while a
standard UI may not fit the user completely, it might be tweaked so that it
gets as closely as possible to the user needs. There are two distinct strategies
of how UI adaptation may be accomplished. Since this differentiation may
have impact on what is actually modified in the tool, we decided to include
this brief detour to generic issues of adaptation. The two strategies
distinguish between the following types (Kules 2000):

• adaptive UI: These are systems and user interfaces that are capable of
monitoring its users, their activity patterns, and automatically adjust the
user interface or content to accommodate these local differences in
activity patterns (which may be due to user’s skill, preference, etc.).

• adaptable UI: These are systems and user interfaces that allow the users
to control and specify adjustments, and often come with the provision of
some guidance or help.

According to the informal definitions, the difference is in the actor; who
performs the adaptation act. In adaptive UI-s it is the tool, applications or the

2. Engineering and Customizing Ontologies 43

system that takes the active role; whereas in adaptable UI-s it is the
human — typically the actual user of the system, but possibly another user
(such as system administrator).

Why do we mention user interface adaptation in this context? Ontologies
are highly structured, formalized artefacts that have sufficient expressiveness
to describe the structure of a system, tool, or its user interface. Considering
that such common tools as Web browsers make use of ontological
formalisms to support customization and thus make life easier for the user, it
is rather surprising that very little of a similar approach is used to improve
the tools for interacting with ontologies.

4. USERS AND ONTOLOGY ENGINEERING

In this section we briefly sketch some of the existing approaches that
have been developed mostly in the context of personalization and scalability
(i.e. the capability to work with large data sets). This overview is intended to
be informative rather than exhaustive; it is intentionally compiled on a level
that abstracts from individual tools and method to approaches and strategies.

As ontologies become more and more complex and as they are integrated
into networks of ontologies, it is reasonable to investigate the means, which
would be capable of making a large network of complex ontologies more
manageable. The customization and personalization of ontologies includes,
in principle, two areas relevant to ontologies:

• customization of the view on an ontology, e.g. during exploring a
network of ontologies. This customization is more or less ad-hoc and the
results of the customization may be discarded once the user proceeds
with exploring the ontology. This customization during exploring an
ontology tries to reduce the complexity of an ontology and only shows
parts which are relevant for the current user.

• customization for the purposes of reusing ontologies and integrating
them into a network with other ontologies according to specific needs
(e.g. during the ontology deployment, reasoning or design phases). Here
the results of the customization will often be integrated into the edited
ontology.

As one basis for the customization, we analyze and briefly overview user
profiles and profiling work, followed by techniques for exploring and
navigating in large data sets (including ontologies), and finally we touch on
the role of algebraic operators to manipulate the topology or content of
ontologies.

44 Chapter 2

4.1 User profiling

User profiles are seen here as a way to describe some user properties or
characteristics and thus as a representation of the context of a user. Such a
profile may for example provide information about the role of a user, the
domain of interest or the current task. This information about the context
helps in a user-tailored information delivery, e.g. by offering personalized
ontology views. When talking about the user, it is important to mention that
we can decide to have an abstract user — this would be, in principle,
corresponding to any member of a group of users in a particular situation.

A user profile can be constructed in different ways depending on the data
it includes and the methods used for its construction, including manual,
semi-automatic and automatic methods. Each of them has some advantages
and disadvantages. For a review of specific user profile acquisition
techniques, consider e.g. sources mentioned in (Dellschaft, Dzbor et al.
2006). Let us focus in this chapter on how such profiles might be deployed
and used in the context of ontology management.

In principle we see the role of user profiles as twofold: (i) as a means
allowing recommendations based on some typicality effects, and (ii) as a
means having a predefined description on the actions to be applied by the
system, depending on some predefined user profile characteristic.

In the former case, it is interesting to acquire information, e.g. about
which ontology views a given category of users prefers, what level of detail
they use in annotating documents using that ontology, or which partition of a
larger ontology they mostly interact with (and for what purpose).

In the latter case, a user profile may act as a kind of task definition for the
activity the user is expected to carry out — an example of such a situation
might be provision of an ontology view that would be less suitable to editors
but much more efficient to validators.

There are many profiling systems in existence; most of them developed
in the context of user interaction with Web documents and Web browsing.
One example is Lifestyle finder (Krulwich 1997)—a collaborative
recommendation system as it groups similar users based on the similarity of
their manually constructed user profiles. It recommends potentially
interesting Web documents to the user based on the ratings of the documents
provided by similar users. A similar example is NewsWeeder (Lang 1995), a
system for electronic Usenet news alerts.

An example of the semi-automatic approach is OntoGen (Fortuna,
Mladenic et al. 2006) that constructs a profile from a set of documents
provided by the user, and then proposes a topic hierarchy (i.e. a simple
ontological model of the user’s interests) that can then be used e.g. to
recommend navigational steps to the user (Fortuna, Mladenic et al. 2006) or

2. Engineering and Customizing Ontologies 45

to visualize a particular collection based on the hierarchy of user interests
(Grcar, Mladenic et al. 2005).

User profiling is one of the important aspects for customizing human-
ontology interaction. User profiles can be used to mesh different data
sources, where the preferences for a data source are based on the user profile
(initially manually, but possibly adjusted based on the user’s activity). User
profiling can also be used for providing a personalized view on an ontology
based on the ontologies previously constructed by the same or a similar user.
Such a personalized view can be seen as putting ontologies in a particular
context, which is familiar to the user (and hence, simplifies his or her
interpretation of the ontology).

4.2 Navigating in complex conceptual structures

Since ontologies are often formal artefacts, the need some transformation
to be comprehensible to the ordinary users. This is rarely straightforward.
First, ontological datasets are relatively large; they contain thousands of
statements the user may need to interact with. For example, a fairly simple
geographic ontology of regions in New York state5 contains as many as
59,000 unique statements just about congressional districts in a single US
state. Second, ontologies could be complex structures representing different
types of relationships. If each of such potential relations is treated as a
dimension in which allowed values could be depicted, then even a
moderately complex ontology leads to a multi-dimensional space, which
poses challenges for navigation and interaction — in particular, when human
cognition naturally prefers (and is able of coping with) two or three
dimensions.

Two strategies that may apply to ontologies are their reduction and
projection. Where reduction is concerned with showing less at a given point
in time (in our case, fewer concepts, entities or relationships), projection
works by showing the same set of concepts, entities and relations differently.
The two strategies are somewhat complementary.

4.2.1 Reducing complexity of navigation

One common reduction strategy has been implemented in a number of
faceted browsers (but not in the context of ontologies). The key principle of
this strategy is that large collections (e.g. libraries or galleries) have many
dimensions according to which they can be viewed, browsed, searched or
navigated. Thus, faceted navigation is an interaction style whereby users

5 A serialization and a downloadable version of this ontology is available from:

http://www.daml.org/2003/02/fips55/NY.owl

46 Chapter 2

filter an appropriate set of items by progressively, step-by-step selecting
from valid dimensions of a particular classification. That classification can
be created according to many principles (including ontology-derived).

Earlier representatives of this strategy include Flamenco — a portal for
browsing fine arts collections (Hearst 2000; Yee, Swearingen et al. 2003) or
mSpace — an access site to a repository about the computer science in the
UK (Schraefel, Karam et al. 2003). More recent examples include e.g.
Longwell and Fresnel (Pietriga, Bizer et al. 2006) from MIT’s Simile project
as representatives of generic frameworks and vocabularies (respectively) for
faceted navigation through RDF collections and for specifying facets. Other
recent examples include BrowseRDF (Oren, Delbru et al. 2006), a generic
RDF browser, or /facet (Hildebrand, van Ossenbruggen et al. 2006), an
RDF browser used in a manner similar to Flamenco, but in the context of the
Dutch cultural heritage project. Nonetheless, most of the above tools focus
on data rather than triple-level graph structures typical for ontological
concepts and relations.

User interaction in faceted style usually starts with an overview of the
browsed collection, which often yields a large number of possibly relevant
matches. In the subsequent browsing steps, this ‘relevant’ set is structured
according to selected categories (e.g. locations, styles, themes, etc.).
Alternatively, the user may narrow the view down by referring to
hierarchical classification (if available). The navigation may end with
accessing a particular item from the collection. We use term ’may’ because
alongside the item the user always sees all other categories and metadata that
provide bridges to alternative collections.

A slightly different view on the principle of faceted navigation is
advocated by the authors of CS AKTive Space and the family of similar
mSpace-based applications (Shadbolt, Gibbins et al. 2004). The faceted
views for browsing the collections are fairly typical, but there is one pane
that also uses a projection strategy — geographic data are shown naturally,
i.e. on a map. A useful side effect of such projections is that they enable the
user to express relations very succinctly (including fuzzy ones such as near
or in the South). Unlike Flamenco, mSpace is more tightly linked to
ontologies — they act as the primary classification of different facets that are
available to the user.

To explore the role of spatial metaphors in navigating complex structures
we point e.g. to work by Mancini (2005), who experimented with ways how
the same content may yield different interpretation if presented (and
navigated) in a spatially different manner. Nevertheless, the use of such
techniques for ontology management needs further research, before we are
able to link them to particular use case scenarios and requirements. More
details on how faceted browsers may assist ontology management has been

2. Engineering and Customizing Ontologies 47

provided in (Dellschaft, Dzbor et al. 2006), which also formed the base for
this section.

In general, what faceted browsers like Flamenco support rather well is
the iterative formulation of the search queries or navigational goals. Key
advantage of this technology is the step away from forcing the user to go
through deep, complex hierarchies in order to find items they are interested
in. Users only navigate to the next slice by following some conceptual clues
(e.g. sub-categories or orthogonal views). Arguably, faceted navigation
seems to be a more natural way of coping with messy, conceptually complex
space, than a rigid, hierarchical tree-like structure.

Thus, the “divide and conquer” strategy also works in the context of
complex conceptual spaces such as ontologies. What is hard to visualize at
once because of variability and differences between different relationships,
can be split into sequences of partial visualizations through which it is easier
to move and which are also more comprehensible to the end user. On the
other hand, faceted browsers suffer from the scaling issue; i.e. they work
reasonably well with a few well-defined facets that can be arbitrarily
combined by the end user. For instance, CS AKTive Space used only three
key (i.e. navigable) dimensions (location, topic and institution). In Longwell,
deployed for MIT OpenCourseWare, there are similarly three dimensions
(level of study, teacher and keywords). An ongoing tension emerges between
offering as many facets to the user as possible while simultaneously helping
to reduce navigational complexity.

4.2.2 Projections for large ontological data sets

In addition to conceptual and relational complexity that has been tackled
by the research into faceted navigation, another similarly hard task is to
navigate through large datasets. A number of projections were proposed to
tackle this. In particular, the fish-eye metaphor enables customizable
navigation; it uses different properties of the objects in a knowledge base to
create clusters of different granularity and of different semantics. For
example, Komzak and Slavik (2003) illustrate this capability to handle large
networks of diverse but conceptually related data in the context of
visualizing the 200k strong student population of The Open University in the
UK, which can be shown on a geographic, per-faculty, per-program or per-
course basis.

The strategy relies on showing the contextual fringe of a part of the
semantic network not corresponding to a particular user’s query or intention
using more coarse-grained clusters than the part that actually corresponds to
the query and is currently in focus. The authors also open up the context-
focus metaphor (Lamping, Rao et al. 1995), so that each particular focus

48 Chapter 2

(fine-grained view) can be embedded into an arbitrary context (coarse-
grained view).

Another algorithm based on the focus-context metaphor is SpaceTree
(Plaisant, Grosjean et al. 2002). SpaceTree is a tree browser to some extent
similar to hyper trees (Lamping, Rao et al. 1995). It addresses one difficulty
of the hyperbolic geometry; namely constant updating of the visual
representation, which makes it hard for the user to create a mental map of the
ontology, hierarchy or taxonomy. SpaceTree uses dynamic rescaling of tree
branches to fit within a constrained space; miniature tree icons are used to
indicate the depth, breadth and size of the sub-trees hidden behind a given
node.

A different example for projecting ontologies is provided by the “crop
circles” metaphor (Parsia, Wang et al. 2005). As with the fish-eye, this
metaphor also shows some implicit topography in an overview mode. In
CropCircles classes and partitions are represented as circles. One can hover
over a particular node in the visualization to see the class it actually
represents. By clicking on a class one can quickly highlight its immediate
neighborhood (children, parents). Also, zooming in and out is easily
supported in this view, and as the recent study from Wang and Parsia (2006)
showed, the metaphor in some cases could outperform other visual
techniques (especially in the context of viewing richly interlinked and deep
ontologies).

On a more traditional level, ontologies are often perceived by many
developers, researchers and users as predominantly hierarchies of subsumed
concepts; i.e. structures where one concept is a kind of another concept (as in
“Ford is a Car”). Hence a lot of effort was put into navigating these, so-
called isA structures. Techniques like IsaViz6 focus on the structurally
dominant relationship in any ontology (subClassOf). Two key shortcomings
of this approach are: (i) its usefulness rapidly falls with the depth of a
hierarchy, and (ii) very few graphs actually have a neat hierarchical
structure. The isA graphs make visually interesting demonstrations, but by
definition, they do not contain various lateral or horizontal relations
(Brusilovsky and Rizzo 2002).

Some of the more recent developments in the field of ontology
visualization took an approach more centered on the user needs. A good
example of this is Jambalaya (Ernst, Storey et al. 2003), a project that started
with the aim to visualize rich ontology graphs and was initially driven by the
technological needs. However, at the application re-design stage, the needs
of real users were considered for particular audiences comprising the
biologists in a large national research center. These requirements came from
observing the actual users — biologists, and conjecturing potentially useful

6 More information available from http://www.w3.org/2001/11/IsaViz

2. Engineering and Customizing Ontologies 49

functional requirements from these observations. As a result, Jambalaya is
more balanced in addressing a range of users needs on an ontology
visualization package.

One the level of underlying technology, Jambalaya’s visualization is still
based on the metaphor of a graph, but allows more customization of what
can be visually depicted. Particularly its FilmStrip metaphor (Ernst, Storey et
al. 2003) suggests an interesting compromise between data overviews and its
specific context. Yet, due to realizing this idea through showing the relevant
information as nodes, the outcome is full of boxes and overlapping edges.
These often achieve the opposite of a positive user experience, as the
overlapping graph sub-structures may easily obscure much of the underlying
semantic structure.

Many practical ontologies use a range of relationship; e.g. UK Ordnance
Survey reports on their use of a range of ontological relationships that may
easily create issues if inappropriately visualized (Dolbear, Hart et al. 2006).
In particular, they highlight issues with fairly common geo-spatial
relationships like contained within, next to or surrounded by. In each of the
cases illustrated, merely showing two nodes from the low-level data
representation linked with a declared or inferred labeled arc is not of much
use. For instance, in some cases objects such as fields may be both
surrounded by and contained within and be inside of a wall. However, if
field F is contained within something else (e.g. wall), by definition it cannot
be next to another field F,’ since they would need to share the ‘container.’
However, to anybody visualizing a dataset containing fields F and F’ it
makes perfect sense to ‘ignore’ the dividing walls and talk just about the
fields.

4.2.3 Benefits of navigational and visualization techniques

Cognitive studies, one of the recent examples is a study by Demian and
Fruchter (2004), show that there are several mutually not fully compatible
requirements on interacting through visual user interfaces:

• a need to find a particular item (e.g. knowing some of its properties),
• a need to explore the context in which an item is defined (e.g. what does

it mean if we say that “Ford is a Car”), and
• a need to establish the difference between two or more items, which may

include temporal differences due to evolution or various conceptual
differences (e.g. “Ford Transit is a Ford, but not a Car, and this is
because…”)

The simple IsaViz and related techniques basically address only the
second need identified above, and even that to a very small extent. The

50 Chapter 2

implications of the discussion in the above paragraphs are that there is
unlikely to be one perfect method or technique for scaling up the navigation
through structured datasets. What is more likely to work is reusing familiar
metaphors, such as the FishEye projections or CropCircles. However, it
seems equally important to use these metaphors at the right point during the
process of navigating ontologies. Crop Circles, for instance, seem to fit best
if one is interested in seeing broad relationships among several ontologies.
Map-like FishEye projections, on the other hand, seem to show a finer level
of granularity — e.g. when one wants to explore the relationship of
networked ontologies to a particular concept in one ontology.

One approach that has not been mentioned so far, but which actually
could combine the need of dealing with large-scale datasets with the need to
simplify the ontological definitions, is inspired by maps and mapping
metaphor. By definition, any map is essentially a projection of a particular
world (most often a landscape) onto a paper (or screen). One can imagine
creating such domain landscapes from several different perspectives. For
instance, a landscape of research topics in Europe is likely to look somewhat
differently from the landscape of UK’s football or the landscape of great
maritime voyages.

Assume we have several pre-computed landscapes available that show
the key terms of a particular domain (an example is shown in Figure 2-1),
their links, relationships, closeness, etc. When we take one or several
ontologies, we can cover these domains with the given ontologies. In some
cases, the coverage would be better and more precise than in others.
Different ontologies would be positioned into different regions of the
landscape — dependent on which landscape the user takes as a foundation
for his or her navigation. Although we have given this example with
ontologies in general, most of the current tools deal only with data (possibly
annotated using ontologies). Hence, adaptations of the familiar techniques
are needed to apply to ontologies as topological structures, not only as data
sets.

Another interesting strategy is motivated by work done by Collins,
Mulholland et al. (2005) on spotlight browsing. The principle of this
navigation strategy is again based on a metaphor — a torch throwing a beam
of light. The user selects a resource or a concept from a particular collection;
then the collection is dynamically restructured so that it conveys interesting
properties, clusters, etc. that may be relevant to the initial ‘spot.’ These
additional items and concepts are then structured around the original spot by
calculating their semantic closeness. The navigation is then equivalent to
shedding a light beam (as shown in the mockup in Figure 2-1), which puts
certain concepts into light (i.e. into navigable focus) and certain other items
into shadow (i.e. into non-navigable periphery).

2. Engineering and Customizing Ontologies 51

Figure 2-1. Mock-up of a 2D rendered landscape with two ontologies broadly covering and
mapping different sections of it. Green areas roughly correspond to different ontologies and
red crosses to selected terms whose distance/mutual positions depend on a particular corpus.

4.3 Customizing ontologies

One of the early works toward ontology customization came from Mitra
and Wiederhold (2004), who proposed a modularized approach to creating
ontologies as this would ease ontology reuse and would help breakdown the
required effort into smaller, manageable pieces. To that goal, they describe a
general idea of ontology customization operators that would support such a
modularized approach and help combine the modules to larger ontologies.
Examples of their operations include, e.g.:

• selection from an ontology (there are different criteria for this);
• intersection of several ontologies (i.e. a common denominator);
• union or extension of several ontologies;
• differentiation or discrimination between ontologies, etc.

In addition to the binary or n-ary operations, there is an important set of
unary operations, those working on a single ontology. It is this particular set
that is of interest in the context of our objective discussed in this chapter. For

52 Chapter 2

example, work by Jannink, Mitra et al. (1999) describes four binary and four
unary operators. Among them are some interesting unary operators:

• summarize — centralizes the ontology into groups of similar concepts;
• glossarize — lists terms subordinate to a given concept without any of

the recognition of the sub-structure;
• filter — extracts instances from ontology according to a given predicate;
• extract — reduces concepts and the possibly corresponding instances

from the ontology according to a given predicate/condition.

Particularly useful operations, from the perspective of reducing ontology
complexity, are the first two operations: summarization and glossarization.
Both essentially drawing on the latter two operations, but providing useful
interpretative viewpoints on a complex conceptual structure. In this chapter
we are not going into more depth with regard to customization operations
and how they may be realized, a brief overview of some tools and their
support for this task is discussed, for instance, by Dellschaft, Dzbor et al.
(2006).

Nonetheless, let us at least mention how the operators mentioned above
might be related to section 4.1 (user profiles) and section 4.2 (ontology
navigation). In both previous sections we relied on the fact that a part of the
ontology is known, but we haven’t really said how such parts might be
obtained. For example, for the spotlight or fish-eye facility, we may need a
central, in-focus portion of an ontology together with several summaries of
the surrounding contextual fringes.

These requirements may be directly linked to the aforementioned
operations for ontology customization — extraction (to get a focus area) and
summarization (to obtain meaningful but brief summaries of what lies
around the focal point). Hence, in general, the techniques described in this
section may be seen as data feeds for the purpose of visualization and
navigation methods, which in turn may act as points where the user may
make choices, which could be captured in a specific profile.

Next we shall present how the three apparently independent areas may
relate together in a kind of user support “stack.”

4.4 Illustrative scenario — putting it all together

Imagine we work with several ontologies, which we want to navigate.
Among others we have FishBase, AgroVoc, FIGIS, and other ontologies
typically used by agricultural experts7. Let us assume our expert wants to
edit parts of the ontology related to Albacore tuna. These need to be located,

7 To learn more about these ontologies visit http://www.fao.org/fi

2. Engineering and Customizing Ontologies 53

extracted, and presented appropriately, because the number of related terms
is potentially exponentially large.

First, large ontologies may be reduced so that they contain the minimal
number of concepts surrounding the albacore tuna, which are still
ontologically complete and sound. This may be achieved by applying one of
the ontology reduction/extraction operators mentioned in section 4.3. The
extraction may find overlaps and possibly generalizations of term subsets, so
that the diversity could be expressed using a smaller number of concepts.

Different alternative navigational paths can then be visually summarized
in a manner following Figure 2-1. The initial position of the yellow “light
beam” would reflect that exploratory path through the concept cloud that
seems to be best covered by the existing fishery ontologies. The numbers in
superscript in the figure may e.g. refer directly to the internal formal
resources referring to a particular theme (e.g. FIGIS, AgroVoc, etc.). In
addition, the weight of the terms is given by their ontological reliability and
provenance — where our expert may quickly see that the fish species are
particularly well conceptualized.

Figure 2-1. Mock-up of an ontology summary view showing concepts related to the focal
term (Albacore) and ontologies covering these terms. Typefaces may reflect e.g.
trustworthiness of terms against ontologies with same italic/bold typeface on the right.

In the shape as shown in Figure 2-1, an expert may easily see different
dimensions corresponding to diverse ontological relationships around the
concept of albacore tuna. Such a conceptual summary space may be easily
reorganized without too much cognitive overhead on the part of our expert.
For instance, re-pointing the beam towards the red section (which may
denote some ontological inconsistency), it is possible to rapidly refine a
particular type of ontological relationship. In our case, assume we target the
locality and fish habitat relations. An outcome of such an action is sketched
in Figure 2-2, where one sees more relevant ontologies, different concepts
emerging in focus, and others fading into the fringe.

54 Chapter 2

Thus, a typical use case applying the three layers of user-centred
ontology management we discussed in this section, presents a mesh of
several familiar techniques. The three areas we mentioned — user profiling,
navigation and visualization techniques, and customization operators — can
be seen as three layers of a stack, which influence each other in a variety of
ways. For example, based on a user profile, one may prefer a particular
navigational technique; such a technique may need to draw upon a specific
customization operation. That, in turn, may help keep the profile up to date,
etc. Hence, the three layers addressing complex user issues in our illustrative
scenario are manifested in the following ways:

Figure 2-2. Mock-up of the repositioned focus of related terms and ontologies covering these
terms

• User profiling techniques:
o acquiring user and group profiles;
o using machine learning to manage user profiles;

• Customized, abstract-level interaction with ontologies:
o hiding the low-level aspects of several ontology engineering tasks;
o making sense of links and relations within/between ontologies;
o ontology visualization on the level of domain coverage;
o spotlight browsing and other less common browsing extensions;

• Ontology customization operations:
o reducing ontology complexity;
o modularization and view customization based on user-selected

criteria;
o customization operations such as module reduction, compounding,

differencing, etc.

2. Engineering and Customizing Ontologies 55

5. CONCLUSIONS

In this chapter we briefly covered the broad and rather complex area of
human-ontology interaction. We started with reviewing generic tenets of
HCI and their relevance to ontology management. We then presented some
empirical evidence highlighting the fact that the existing ontology
engineering tools are still at a very early developmental stage (from the
software lifecycle point of view). We concluded this part with highlighting
several functional opportunities that seem to be missing in the existing tools
for ontology management, in particular for ontology engineering.

Then we offered an exploratory survey of some areas that are not
commonly associated with ontological engineering, and considered what
roles these techniques may play in making the human-ontology interaction
more mainstream and more acceptable for so-called ordinary users. In
particular, we started with user profiling, elaborated on the use of data
visualization, navigation and exploration techniques, and briefly touched on
the need to investigate ontology customization operations and methods, as
the foundation of our triple stack of technologies that may make life of the
user easier.

ADDITIONAL READING

Collins, T., Mulholland, P., et al. (2005). Semantic Browsing of Digital Collections. Proc. of
the 4th Intl. Semantic Web Conf., Ireland, pp.127–141.

Dellschaft, K., Dzbor, M., et al. (2006). Review of methods and models for
customizing/personalizing ontologies, NeOn project: From http://neon-project.org/web-
content/index.php?option=com_weblinks&catid=17 &Itemid=35 (April 2007).

Duineveld, A. J., Stoter, R., et al. (2000). “WonderTools? A comparative study of ontological
engineering tools.” Intl. Journal of Human-Computer Studies 52(6): pp.1111–1133.

Dzbor, M., Motta, E., et al. (2006). Developing ontologies in OWL: An observational study.
OWL:Experiences & Directions wksp., Georgia, US.

Ernst, N. A., Storey, M. A., et al. (2003). Addressing cognitive issues in knowledge
engineering with Jambalaya. Knowledge Capture Conference (K-Cap), Florida, US.

Norman, D. (1998). The Invisible Computer. Cambridge, MA, MIT Press.
Shneiderman, B. (2000). “Universal Usability: pushing human-computer interaction research

to empower ever y citizen.” Communications of the ACM 43(5): pp.84–91.
Shneiderman, B. and Plaisant, C. (2004). Designing the User Interface: Strategies for

effective human-computer interaction, Addison-Wesley, 672 pages.
Storey, M. A., Lintern, R., et al. (2004). Visualization and Protégé. 7th International Protégé

Conference, Maryland, US.

56 Chapter 2

REFERENCES

Brusilovsky, P. and Rizzo, R. (2002). “Map-Based Horizontal Navigation in Educational
Hypertext.” Journal of Digital Information 3(1): pp.156.

Collins, T., Mulholland, P., et al. (2005). Semantic Browsing of Digital Collections. Proc. of
the 4th Intl. Semantic Web Conf., Ireland, pp.127–141.

Colman, A. M. (2001). A Dictionary of Psychology. Oxford, Oxford University press, 864
pages.

Dellschaft, K., Dzbor, M., et al. (2006). Review of methods and models for
customizing/personalizing ontologies, NeOn project: From http://www.neon-
project.org/web-content/index.php?option=com_weblinks&catid=17&Itemid=35
(April 2007).

Demian, P. and Fruchter, R. (2004). CoMem: Evaluating Interaction Metaphors for
Knowledge Reuse from a Corporate Memory. Stanford, Center for Integrated Facility
Engineering, Stanford University: 47 pages.

Dolbear, C., Hart, G., et al. (2006). What OWL has done for Geography and why we Don't
Need it for Map Reading. OWL:Experiences & Directions workshop, Georgia, US.

Duineveld, A. J., Stoter, R., et al. (2000). “WonderTools? A comparative study of ontological
engineering tools.” Intl. Journal of Human-Computer Studies 52(6): pp.1111–1133.

Dzbor, M., Motta, E., et al. (2006). Developing ontologies in OWL: An observational study.
OWL:Experiences & Directions wksp., Georgia, US.

Ernst, N. A., Storey, M. A., et al. (2003). Addressing cognitive issues in knowledge
engineering with Jambalaya. Knowledge Capture Conference (K-Cap), Florida, US.

Fensel, D. and Gómez-Pérez, A. (2002). A survey on ontology tools, OntoWeb Project:
http://www.aifb.uni-karlsruhe.de/WBS/ysu/publications/OntoWeb_Del_1-3.pdf
(April 2007).

Fortuna, B., Mladenic, D., et al. (2006). Semi-automatic data-driven ontology construction
system. Proc. of the 9th Multiconference on Information Society, pp.223–226.

Goel, V. (1995). The Sketches of Thought. Massachussets, US, MIT Press, 274 pages.
Grcar, M., Mladenic, D., et al. (2005). User profiling for interest-focused browsing history.

Proc. of the 8th Multiconference on Information Society, pp.223–226.
Gruber, T. R. (1993a). “A Translation approach to Portable Ontology Specifications.”

Knowledge Acquisition 5(2): pp.199–221.
Gruber, T. R. (1993b). “Towards principles for the design of ontologies used for knowledge

sharing.” Intl. Journal of Human-Computer Studies 43(5/6): pp.907–928.
Hearst, M. (2000). “Next Generation Web Search: Setting Our Sites.” IEEE Data Engineering

Bulletin (Special issue on Next Generation Web Search, Luis Gravano (Ed.)).
Hildebrand, M., van Ossenbruggen, J., et al. (2006). /facet: A browser for heterogeneous

semantic web repositories. Proc. of the 5th Intl. Semantic Web Conf., Georgia, US,
pp.272–285.

Jannink, J., Mitra, P., et al. (1999). An algebra for semantic interoperation of semistructured
data. IEEE Knowledge and Data Engineering Exchange Workshop, Illinois, US.

Kalyanpur, A., Parsia, B., et al. (2005). “Debugging Unsatisfiable Classes in OWL
Ontologies.” Journal of Web Semantics 3(4).

Kirkpatrick, D. L. (1994). Evaluating Training Programs: the Four Levels. San Francisco,
Berrett-Koehler Publishers, 289 pages.

Komzak, J. and Slavik, P. (2003). Scaleable GIS Data Transmission and Visualisation. Intl.
Conf. on Information Visualization (IV), UK.

Krulwich, B. (1997). “Lifestyle finder.” AI magazine 18(2): pp.37–46.

2. Engineering and Customizing Ontologies 57

Kules, B. (2000). “User modeling for adaptive and adaptable software systems.” UUGuide:

Practical design guidelines for Universal Usability, From
http://www.otal.umd.edu/UUGuide (April 2007).

Lamping, J., Rao, R., et al. (1995). A focus-context technique based on hyperbolic geometry
for visualizing large hierarchies. Proc. of the Conf. on Human Factors in Computing
Systems.

Lang, K. (1995). News weeder : Learning to filter netnews. Proc. of the 12th Intl. Conf. on
Machine Learning.

Mancini, C. (2005). Cinematic Hypertext: Investigating a New Paradigm. Amsterdam, The
Netherlands, IOS Press, 192 pages.

Mitra, P. and Wiederhold, G. (2004). An ontology composition algebra. Handbook on
Ontologies. S. Staab and R. Studer. Heidelberg, Germany, Springer Verlag: pp.93–113.

Norman, D. (1998). The Invisible Computer. Cambridge, MA, MIT Press.
Noy, N. F. and Musen, M. A. (2003). “The PROMPT Suite: Interactive Tools For Ontology

Merging And Mapping.” International Journal of Human-Computer Studies 59(6):
pp.983–1024.

Noy, N. F., Sintek, M., et al. (2001). “Creating Semantic Web Contents with Protege 2000.”
IEEE Intelligent Systems 16(2): pp. 60–71.

Oren, E., Delbru, R., et al. (2006). Extending faceted navigation for RDF data. Proc. of the
5th Intl. Semantic Web Conf., Georgia, US, pp.559–572.

Parsia, B., Wang, T., et al. (2005). Visualizing Web Ontologies with CropCircles. Proceedings
of the ISWC 2005 Workshop on End User Semantic Web Interaction, Ireland.

Pietriga, E., Bizer, C., et al. (2006). Fresnel: A browser-independent presentation vocabulary
for RDF. Proc. of the 5th Intl. Semantic Web Conf., Georgia, US, pp.158–171.

Pinto, S., Peralta, N., et al. (2002). Using Protégé-2000 in Reuse Processes. Evaluation of
ontology-based tools (EON), pp.15–25.

Plaisant, C., Grosjean, J., et al. (2002). Spacetree: Suppor ting exploration in large node link
tree, design evolution and empirical evaluation. Proc. of the Intl. Symposium on
Information Visualization.

Shraefel, M C, Karam, M., et al. (2003). mSpace: interaction design for user-determined,
adaptable domain exploration in hypermedia. Workshop on Adaptive Hypermedia and
Adaptive Web Based Systems, UK, pp.217–235.

Scriven, M. (1991). Beyond Formative and Summative Evaluation. Evaluation and
Education: A Quarter Century. M. W. McLaughlin and D. C. Phillips. Chicago, University
of Chicago Press: pp.19–64.

Shadbolt, N. R., Gibbins, N., et al. (2004). “CS AKTive Space: or how we learned to stop
worrying and love the Semantic Web.” IEEE Intelligent Systems 19(3): pp.41–47.

Shneiderman, B. (2000). “Universal Usability: pushing human-computer interaction research
to empower ever y citizen.” Communications of the ACM 43(5): pp.84–91.

Shneiderman, B. and Plaisant, C. (2004). Designing the User Interface: Strategies for
effective human-computer interaction, Addison-Wesley, 672 pages.

Storey, M. A., Lintern, R., et al. (2004). Visualization and Protégé. 7th International Protégé
Conference, Maryland, US.

Wang, T. D. and Parsia, B. (2006). CropCircles: Topology sensitive visualization of OWL
class hierarchies. Proc. of the 5th Intl. Semantic Web Conf., Georgia, US, pp.695–708.

Yee, P., Swearingen, K., et al. (2003). Faceted Metadata for Image Search and Browsing.
Proc. of the ACM Conf. on Computer-Human Interaction (CHI).

Chapter 3

ONTOLOGY MANAGEMENT
INFRASTRUCTURES

Walter Waterfeld1, Moritz Weiten2, Peter Haase3
1Software AG, Uhlandstr. 12, D-64289 Darmstadt, Germany,
Walter.Waterfeld@softwareag.com; 2Ontoprise GmbH, Amalienbadstr. 36, D-76227
Karlsruhe, Germany, Weiten@ontoprise.com; 3AIFB, Universität Karlsruhe(TH), Englerstr.
28, D-76128 Karlsruhe, Germany, pha@aifb.uni-karlsruhe.de

Abstract: In this chapter we examine tools for ontology management. A state of the art
analysis of the currently existing tools like editors, browsers and reasoners
shows a number of deficits like many isolated tools, which cover only a small
part of the lifecycle. Thus there is the need for an integrated environment for
ontology management. Based on these deficits we define for such an
integrated environment critical requirements, which cover the whole
engineering lifecycle of large scale ontologies in a distributed environment.
The NeOn architecture — a reference architecture for ontology management
tools — addresses these requirements through a layered and extensible
architecture. It enhances ontology management techniques with mechanisms
for large distributed semantic applications. It also opens traditional closed
ontology management tools with a service-based integration into scalable
standard infrastructures. The NeOn toolkit as the reference implementation of
the NeOn architecture resolves the deficits of these tools concerning the stated
requirements

Keywords: Ontology management; OWL; reasoner; registry; repository; rules

1. INTRODUCTION AND MOTIVATION

Ontology management tools are needed for the development of semantic
applications especially in the growing corporate Semantic Web, which
comprises the application of semantic technologies in an enterprise
environment. The main infrastructure components needed are tools to
develop ontologies and reasoners to process these ontologies. The

60 Chapter 3

functionality of development tools is currently mainly focussed on editing
and browsing ontologies. A broad range of tools and a large common core of
features have emerged in recent years. Opposite to that, reasoners as the
other established ontology infrastructure, have quite small core functionality.
Here the activities concentrate more in the area of the supported ontology
languages and on efficient realisations of the reasoning process.

Analyzing the state-of-the-art ontology management tools, we observe
that the evolution of semantic technologies has led to a number of concrete
implementations to support specific ontology engineering activities and that
in particular the initial development of single, static ontologies is well
supported.

However, popular tools available today for ontology development are
limited with respect to (i) lifecycle support, (ii) collaborative development of
semantic applications, (iii) Web integration, and (iv) the cost-effective
integration of heterogeneous components in large applications.

While typically today’s environments are ‘closed,’ and focus on a single
or a few individual aspects/phases of the lifecycle, we require an
environment that adequately supports the developer user loop over the
lifecycle of networked ontologies.

The NeOn project1 addresses those aspects. NeOn is a large European
Research project developing an infrastructure and tool for large-scale
semantic applications in distributed organizations. Within NeOn, we aim at
advancing the state of the art in ontology management by developing a
reference architecture. Particularly, we aim at improving the capability to
handle multiple networked ontologies that are created collaboratively, and
might be highly dynamic and constantly evolving. This is achieved by
providing — in a major integrative effort — an infrastructure for networked
ontology management capable of suiting the community’s needs. The heart
of this infrastructure is the NeOn Toolkit2 for engineering contextualized
networked ontologies and semantic applications.

In this chapter, we will first provide an overview of the state-of-the-art in
management tools in the subsequent Section 2. We then analyze requirements
that modern ontology management tools must meet in order to support the
lifecycle of ontologies in networked, distributed, and collaborative
environments in Section 3. In Section 4 we present an overview of the NeOn
reference architecture for ontology management in large-scale semantic
applications. We conclude with a summary in Section 5.

1 http://www.neon-project.org/
2 http://www.neon-toolkit.org/

3. Ontology Management Infrastructures 61

2. STATE OF THE ART

In this section we provide an overview of state-of-the-art ontology
management tools. We distinguish between development tools and
infrastructure components.

2.1 Ontology infrastructures

In this section we provide an overview on state-of-the-art reasoners and
repositories. Functionality-wise there is a clear distinction between reasoners
and repositories.

While repositories aim at being able to efficiently store and retrieve large
collections of data (i.e. managing explicit facts), reasoners focus on
deduction procedures to derive implicit knowledge.

Thus independent reasoner and repository realisations can be normally
integrated via defined interfaces. However for efficient large-scale ontology
support, repository and reasoner realizations have often some of the other
functionality. For example ontology repository realisations provide database-
like functionalities with (typically limited) inferencing support. In turn,
many reasoner realisations rely on an integrated repository.

In the following, we start with an overview on existing reasoners, where
we discuss the supported ontology languages, their reasoning approaches,
availability and interfaces. The overview is partially based on the
Description Logic Reasoner site3.

• Cerebra Engine is a commercially developed C++-based reasoner. It
implements a tableau-based decision procedure for general TBoxes
(subsumption, satisfiability, classification) and ABoxes (retrieval, tree-
conjunctive query answering using an XQuery-like syntax). It supports
the OWL-API and comes with numerous other features.

• FaCT++ is a free open-source C++-based reasoner for SHOIQ with
simple data types (i.e., for OWL-DL with qualifying cardinality
restrictions). It implements a tableau-based decision procedure for
general TBoxes (subsumption, satisfiability, classification) and
incomplete support of ABoxes (retrieval). It supports the Lisp-API and
the DIG-API.

• KAON2 (Motik and Sattler, 2006) is a free (free for non-commercial
usage) Java reasoner for SHIQ4 extended with the DL-safe fragment of
SWRL. It implements a resolution-based decision procedure for general

3 http://www.cs.man.ac.uk/~sattler/reasoners.html
4 That is a special description logic. For an overview see http://www.cs.man.ac.uk/~ezolin/

logic/complexity.html.

62 Chapter 3

TBoxes (subsumption, satisfiability, classification) and ABoxes
(retrieval, conjunctive query answering). It comes with its own, Java-
based interface, and supports the DIG-API.

• OntoBroker is a commercial Java based main-memory deductive
database engine and query interface. It processes F-Logic ontologies and
provides a number of additional features such as integration of relational
databases and various built-ins. The new version of OntoBroker offers
the KAON2 API.

• Pellet (Sirin et al., 2007) is a free open-source Java-based reasoner for
SROIQ5 with simple data types (i.e., for OWL 1.1). It implements a
tableau-based decision procedure for general TBoxes (subsumption,
satisfiability, classification) and ABoxes (retrieval, conjunctive query
answering). It supports the OWL-API, the DIG-API, and Jena interface
and comes with numerous other features.

• RacerPro is a commercial (free trials and research licenses are available)
lisp-based reasoner for SHIQ with simple data types (i.e., for OWL-DL
with qualified number restrictions, but without nominals). It implements
a tableau-based decision procedure for general TBoxes (subsumption,
satisfiability, classification) and ABoxes (retrieval, nRQL query
answering). It supports the OWL-API and the DIG-API and comes with
numerous other features.

• OWLIM is semantic repository and reasoner, packaged as a Storage and
Inference Layer (SAIL) for the Sesame RDF database. OWLIM uses the
TRREE engine to perform RDFS, and OWL DLP reasoning. It performs
forward-chaining of entailment rules on top of RDF graphs and employs
a reasoning strategy, which can be described as total materialization.
OWLIM offers configurable reasoning support and performance. In the
“standard” version of OWLIM (referred to as SwiftOWLIM) reasoning
and query evaluation are performed in-memory, while a reliable
persistence strategy assures data preservation, consistency and integrity.

In the following we additionally discuss two implementations of
ontology repositories: Jena and Sesame are the two most popular
implementations of RDF stores. They play a separate role, as their primary
data model is that of RDF. However, they deserve discussion, as they offer
some OWL functionalities and limited reasoning support.

• Sesame (http://openrdf.org, Broekstra et al., 2002) is an open source
repository for storing and querying RDF and RDFS information. OWL
ontologies are simply treated on the level of RDF graphs. Sesame

5 That is another special description logic. For an overview see

http://www.cs.man.ac.uk/~ezolin/logic/complexity.html.

3. Ontology Management Infrastructures 63

enables the connection to DBMS (currently MySQL, PostgreSQL and
Oracle) through the SAIL (the Storage and Inference Layer) module, and
also offers a very efficient direct to disk Sail called Native Sail. Sesame
provides RDFS inferencing and allows querying through SeRQL, RQL,
RDQL and SPARQL. Via the SAIL it is also possible to extend the
inferencing capabilities of the system. (In fact, this is how the OWLIM
reasoner is realized.) The main ways to communicate with the Sesame
modules are through the Sesame API or through the Sesame Server,
running within a Java Servlet Container.

• Jena is a Java framework for building Semantic Web applications
(http://jena.sf.net). It offers the Jena/db module which is the
implementation of the Jena model interface along with the use of a
database for storing/retrieving RDF data. Jena uses existing relational
databases for persistent storage of RDF data; Jena supports MySQL,
Oracle and PostgreSQL. The query languages offered are RDQL and
SPARQL. Just as in Sesame, the OWL support is realized by treating
OWL ontologies as RDF graphs. However, in addition Jena also
provides a separate OWL API and allows integration with external
reasoners, such as Pellet.

2.2 Ontology development tools

A clear focus of current ontology management tools is to support the
development of ontologies with a wide range of editing features. The
following description of ontology tools is not meant to be complete. Instead
we chose tools which represent different philosophies due to their history,
their target users, etc.

Starting with Protégé as probably the most popular ontology
development tool we describe an environment with a long history and a large
number of features which go beyond pure editing of ontology-files. Other
environments supporting a range of tasks in the broader context of ontology
development include the commercial tools such as TopBraid Composer™.
We then present tools that focus on certain aspects, such as providing a
native OWL editor reflecting its characteristics as Semantic Web language
(SWOOP), offering a rich graphical interface (Altova Semantic Works™) or
rule-support and semantic integration (OntoStudio®).

While most of the tools focus on RDF(S) and/or OWL as ontology
language, two of the presented environments support other languages.
Protégé as a hybrid tool supports its own frame-based representation as well
as OWL and RDF(S). The frame-based format, which from a historical point
of view is the “original” native representation of Protégé, is related to
formats used in expert system shells. OntoStudio® offers a couple of

64 Chapter 3

functionalities based on the F-Logic language, which mainly concerns the
creation and management of rules. The latter functionalities differ from the
rule-features some of the other tools offer, since those support SWRL rules
as an extension to OWL ontologies.

The following sections focus on the characteristics of the tools from a
user’s perspective. The last sections provide a comparison of the core
features and characterize the current state of ontology development tools.

2.2.1 Protégé

Protégé 3.2 (Gennari et al., 2002) is the latest version of the Protégé
OWL editor (Knublauch et al., 2004), created by the Stanford Medical
Informatics group at Stanford University. Protégé is a Java-based open
source standalone application to be installed and run a local computer. It
enables users to load and save OWL and RDF ontologies, edit and visualize
classes, properties and SWRL rules (Horrocks et al., 2004), define logical
class characteristics as OWL expressions and edit OWL individuals.

With respect to the supported languages Protégé is a hybrid tool. The
internal storage format of Protégé is frame-based. Therefore Protégé has
native frame-support. The support for OWL is provided by a special plugin
that fits into the Protégé plugin architecture. Another example of plugin is
the versioning support in Protégé (Noy et al., 2004).

The Protégé-OWL API is built on top of the frame-based persistence API
using “frame-stores.” The API provides classes and methods to load and
save OWL files, to query and manipulate OWL data models, and to perform
reasoning based on Description Logic engines. The API is designed to be
used in two contexts: (1) development of components that are executed
inside the Protégé UI, and (2) development of stand-alone applications (e.g.
Swing applications, Servlets or Eclipse plugins).

The OWL APIs implementation rely both on the frame-based knowledge
base for low level (file or DBMS based) triple storage, and both on the Jena6
APIs for various services, such as OWL parsing and data type handling.

The Protégé-OWL API can be used to generate a Jena Model at any time
in order to query the OWL model, for example by means of the SPARQL
RDF query language (Prud’hommeaux et al., 2007). Reasoning can be

6 Jena, developed by HP Labs, is one of the most widely used Java APIs for RDF and OWL
(http://jena.sourceforge.net/).

3. Ontology Management Infrastructures 65

performed by means of an API which employs an external DIG7 compliant
reasoner, such as RACER, FaCT++, Pellet or KAON2.

Figure 3-1. Protégé

Protégé offers a proprietary framework for plugins enabling users to
extend the tool. The possible plugins include custom widgets as well as
additional storage backends. In contrast to platforms like Eclipse there is a
predefined set of possible extensions, which excludes “plugins of plugins.”

Protégé has gained much popularity over the years and has a large user-
base. Consequently a large number of plugins is available. The standard
distribution contains plugins for graph-based visualization, import of
different formats and many more. Additional plugins offer for example
ontology merging functionalities. Apart from the community support
through the Protégé website and mailing lists, there are Protégé regular user
conferences.

7 The DIG Interface (http://dig.sourceforge.net/) is a standardised XML interface to
Description Logics systems developed by the DL Implementation Group
(http://dl.kr.org/dig/).

66 Chapter 3

For historical reasons Protégé has not been designed as a native OWL
tool. As previously mentioned the OWL support is built on top of the frame-
based storage API, but it also uses partly the Jena API for certain tasks.
Protégé builds on a bridge between its internal triple store and the Jena API.

While Protégé offers a unique look and feel for both, frame-based
ontologies and OWL ontologies, the implementation of an OWL API on top
of a frame-based API has significant disadvantages over the design of a
native OWL API. Consequently the next generation of Protégé OWL, which
by the time of writing this text was only available as a prototype, is a
standalone tool using a “pure” OWL API.

2.2.2 Altova SemanticWorks™

SemanticWorks™ is a commercial OWL editor offered by Altova8. The
most outstanding feature of the tool is the graphical interface.
SemanticWorks™ supports the visual editing of OWL and RDF(S) files
using a rich, graph-based multi-document user interface. The latter supports
various graphical elements including connections and compartments.

The visualization of ontologies utilizes very similar mechanisms from the
other Altova products, which are XML-based. This means they are syntax-
oriented. There is for example hardly any difference between the
visualization of meta-objects of OWL like owl:Class and a user class. This
makes it difficult to get an overview on the user content of an ontology.

Ontologies can be saved as .rdf, .rdfs, or .owl files and can be exported in
their RDF/XML and N-Triples formats.

SemanticWorks™ does — in contrast to other tools presented in this
section — not include direct interactions with reasoners for consistency
checking, debugging, query processing etc. Thus the tool might be seen as a
pure editor, rather than a development tool, especially when compared to
tools like SWOOP. The latter also focuses on the creation and management
of OWL-files, but includes for example debugging capabilities. The strength
of SemanticWorks™ is the graphical interface with its navigation
capabilities (e.g. dynamic expansion of elements with automatic layout).

2.2.3 TopBraid Composer™

TopBraid Composer™ is a modelling tool for the creation and
maintenance of ontologies9. It is a complete editor for RDF(S) and OWL
models. TopBraid Composer™ is built upon the Eclipse platform and uses
Jena as its underlying API. The following list contains some of the

8 At the time of this writing, SemanticWorks™ 2007 is the latest version available.
9 At the time of this writing, the TopBraid Composer™ is available as version 2.2.

3. Ontology Management Infrastructures 67

characteristics of the tool. It is implemented as an IDE-application using the
Eclipse platform with all its advantages (such as the plugin concept).
TopBraid Composer™ supports consistency checks and other reasoning
tasks. The system has the open-source DL reasoner Pellet built-in as its
default inference engine, but other classifiers can be accessed via the DIG
interface.

Figure 3-2. Altova SemanticWorks

Historically the development of TopBraid Composer™ has its roots in
Protégé OWL10. Thus some of the concepts of TopBraid™ are similar to
those of Protégé, such as the generation of schema-based forms for data
acquisition. The most obvious difference from a technical perspective is the
usage of the Eclise platform as a base and the lack of the frame-based part.

10 As pointed out on the TopBraid website mid of 2006:

http://www.topbraidcomposer.com/tbc-protege.html

68 Chapter 3

The latter allows TopBraid Composer™ to build on an OWL/RDF(S) based
infrastructure, but excludes the support for frame-based technologies.

TopBraid Composer™ offers functionalities going beyond the creation
and management of OWL/RDF(S) files. This includes the import of
databases, XML-Schemas, UML and spreadsheets as well as a basic support
for rules. The system supports rules in either the Jena Rules format or
SWRL. Both types of rules are executed with the internal Jena Rules engine
to infer additional relationships among resources. Rules can be edited with
support of auto-completion and syntax checking.

Figure 3-3. TopBraid Composer™

Other features of TopBraid Composer™ include the visualization of
relationships in RDFS/OWL resources in a graphical format and the support
for the concurrent editing of several ontologies. TopBraid Composer™
provides an explanation feature for OWL DL that is based on Pellet —
similar to SWOOP.

TopBraid Composer™ represents a complex ontology development tool
suitable for a number of tasks that go beyond the creation of OWL/RDF(S)
files. As the other Eclipse-based implementations, TopBraid Composer™ is
extensible by custom plugins. TopBraid Composer™ does — in contrast to
the historically related Protégé — mainly (if not only) target professional
users rather than a large community.

3. Ontology Management Infrastructures 69

2.2.4 IODT

The Integrated Ontology Development Toolkit (IODT) was developed by
IBM. This toolkit includes the Ontology Definition Metamodel (EODM),
EODM workbench, and an OWL Ontology Repository (named Minerva).
EODM is derived from the OMG’s Ontology Definition Metamodel (ODM)
and implemented in Eclipse Modelling Framework (EMF). In order to
facilitate software development and execution, EODM includes RDFS/OWL
parsing and serialization, reasoning, and transformation between
RDFS/OWL and EMF-based formats. These functions can be invoked from
the EODM Workbench or Minerva.

Minerva is an OWL ontology storage, inference, and query system based
on RDBMS (Relational Database Management Systems). It supports DLP
(Description Logic Program), a subset of OWL DL.

Figure 3-4. EODM Workbench

The EODM Workbench (see a screenshot in the following figure) is an
Eclipse-based editor for users to create, view and generate OWL ontologies.

70 Chapter 3

It has UML-like graphic notions to represent OWL class, restriction and
property etc. EODM Workbench built by using EODM, EMF, Graphic
Editing Framework (GEF), which provides the foundation for the graphic
view of OWL. It also provides two hierarchical views for both OWL
class/restriction and OWL object/datatype property.

As an Eclipse-based Tool the EODM workbench benefits from all
advantages of the Eclipse platform (coupling with other plugins, etc.). In
addition to traditional tree-based ontology visualization, EODM workbench
provides UML-like graphic notion. Class, DatatypeProperty and
ObjectProperty in OWL share the similar notion as Class, Attribute and
Association in UML. Detailed properties of OWL constructs are shown in
the Property view.

The EODM workbench supports multiple views for ontologies, enabling
users to visually split large models. These views are independent from each
other but synchronized automatically.

Being based on Eclipse, EODB is extensible, similar to products like
TopBraid Composer™ and OntoStudio®. It does however not offer the
direct interaction with an underlying reasoner in the form that the latter tools
to and therefore lacks comfortable consistency checks or testing features.

EODM is deployed and installed as a set of Eclipse plugins. It therefore
does not offer the easy-to-use installation routines of the other environments,
which are deployed as standalone tools.

Offering an EMF-based implementation of an OWL and an RDF(S)
metamodel, EODM offers interesting opportunities for developers, such as
the combination with other EMF-based technologies or the extension of the
metamodel itself.

2.2.5 SWOOP

SWOOP (Kalyanpur et al., 2005) is an open-source hypermedia-based
OWL ontology editor. The user interface design of SWOOP follows a
browser paradigm, including the typical navigation features like history
buttons. Offering an environment with a look and feel known from Web
browsers, the developers of swoop aimed at a concept that average users are
expected to accept within short time. Thus users are enabled to view and edit
OWL-ontologies in a “Web-like” manner, which concerns the navigation via
hyperlinks but also annotation features. SWOOP therefore provides an
alternative to Web-based ontology tools but offers additional features such
as a plugin-mechanism.

SWOOP is designed as a native OWL-editor, which supports multiple
OWL ontologies and consistency checking based on the capabilities of

3. Ontology Management Infrastructures 71

attached reasoners. Following the Web browser-approach, it reflects the
characteristics of OWL being a language for the Semantic Web.

All ontology editing in SWOOP is done inline. Based on its HTML
renderer, SWOOP uses different colour codes and font styles to emphasize
ontology changes. Undo/redo options are provided with an ontology change
log and a rollback option.

Some of the core features of SWOOP are the debugging features for
OWL ontologies, exploiting features of OWL reasoners (in this case Pellet).
This includes for example the automatic generation of explanations for a set
of unsatisfiable axioms (e.g. for a particular class).

Figure 3-5. SWOOP

SWOOP can be characterized as a “pure” OWL tool, focusing on core
features of the language rather then on general ontology development tasks.
The tool has to offer additional features such as a basic version control, it
does not include a couple of typical functionalities going beyond OWL
editing, such as the integration or import of external (non-OWL/RDF-)
sources.

72 Chapter 3

2.2.6 OntoStudio®

OntoStudio® is a commercial product of ontoprise. It is a the front-end
counterpart to OntoBroker®, a fast datalog based F-Logic inference
machine. Consequently a focus of the OntoStudio® development has been
on the support of various tasks around the application of rules. This includes
the direct creation of rules (via a graphical rule editor) but also the
application of rules for the dynamic integration of datasources (using a
database schema import and a mapping tool).

Figure 3-6. OntoStudio® (with Mapping-View)

OntoStudio® is available with a main memory- or database-based model,
is therefore scaleable and is thus suitable for modelling even large
ontologies. Based on Eclipse OntoStudio® provides an open framework for
plugin developers. It already provides a number of plugins such as a query
plugin, a visualizer and a reporting plugin supporting the Business
Intelligence Reporting Tool (BIRT).

3. Ontology Management Infrastructures 73

Just like TopBraid Composer™, OntoStudio® is implemented as IDE-
application using the Eclipse platform with all the advantages such as the
plugin concept.

OntoStudio® is tightly coupled to F-Logic (resp. its proprietary XML
serialization OXML); the import and export from/to OWL/RDF is restricted
mainly to concepts which can be expressed in F-Logic. Despite some minor
syntactical details the Ontoprise F-Logic dialect conforms semantically to
the F-Logic definition (Kifer, M. et al., 1995). Ontoprise is in close contact
with the F-Logic forum to work on future versions of F-Logic and further
standardization efforts.

OntoStudio® offers a graphical and a textual rule editor as well as
debugging features as well as a form-based query-editor. It also includes a
graphical editor for the creation and management of ontology mappings
including conditional mappings, filters and transformations. Thus
OntoStudio® takes advantage of the capabilities of F-Logic regarding rules
(such as the support for function symbols).

2.3 Summary and remarks

In Table 3-1 we compare the described development tools by some
important characteristics:

• Views: what type of representation is used to visualize the ontology
elements;

• Basic infrastructure: what is the basic realisation infrastructure;
• Supported reasoner(s);
• Repository: which underlying repository is used?

Table 3-2 shows the important characteristics of the described reasoners:

• Interfaces: what are the client interfaces to access the reasoners
• Reasoning approach: what is the characteristic algorithm for the

reasoning
• Supported Logic: which ontology language is supported.

The comparison shows that in many aspects the realisation of the
reaoners is converging at least to only a few different approaches. For the
interfaces the DIG interface is almost accepted as a service interface. For the
Java client APIs the OWL API is very popular. For the reasoning approach
the tableaux algorithm is very common. But several other realisations show
that it is not sufficient especially for reasoning on large amount of instances.
Most reasoners support OWL/DL or a subset of an equivalent description
logic. However the support of rules either as DL safe rules or as F-Logic

74 Chapter 3

indicates that pure OWL functionality is not sufficient for semantic
applications.

Table 3-1. Comparison Ontology development tools

Protégé
OWL

Semantic
Works

TopBraid
Composer™ IODT SWOOP OntoStudio®

Primary
Ontology
Language11

OWL OWL OWL OWL OWL F-Logic

View Form
Text

Form
Text
Graph

Form
Text
(UML-like)
Graph

(UML-
like)
Graph

Browser-
like

Forms

Platform Java .NET Eclipse Eclipse Browser
+
Java

Eclipse

Supported
Reasoner

Via DIG None Pellet,
(built-in)
Via DIG

RACER,
Pellet

Pellet OntoBroker

Repository Files,
RDBMS

Files Files,
RDBMS

RDF on
RDBMS

Files Files, RDBMS

Table 3-2. Capabilities/Characteristics of Reasoners
 Cerebra FACT++ KAON2 Pellet Racer Ontobroker OWLIM
Interfaces OWL

API
DIG KAON2

API
DIG
OWL
API,
Jena API

DIG,
OWL
API

KAON2
API

Sesame
API

Reasoning
Approach

Tableaux Tableaux Resolution Tableaux Tableaux Datalog Forward
Chaining

Supported
Logic

OWL/DL SHOIQ SHIQ
+
DL safe
rules

SROIQ
+
DL safe
Rules

SHIQ F-Logic OWL
DLP

Based on C++ C++ Java Java Lisp Java Java

As mentioned in the introduction of this section, the tools focus on
editing capabilities for OWL and RDF(S). They partially provide rich
functionalities based on different editing paradigms, i.e. form-based editors
or graph-based editors. In most cases those different editing features are not
offered in parallel. The main exception is the TopBraid Composer®, which
provides textual, graph-based and form-based editors and thus partially
supports users with different levels of expertise or different profiles. In
Protégé a number of wizards and two different class views ensure a certain
degree of flexibility regarding the means of ontology creation and

11 Most tools support additional languages via import/export.

3. Ontology Management Infrastructures 75

management. However, the flexibility of the tools regarding the support for
users with a different background is still limited.

As the popularity of semantic technologies increases and a wide range of
ontology-based applications emerge the need for flexible and customizable
environments will increase. A graph-based editor might not be the first
choice for ontology experts but appropriate for domain experts with less in-
depth knowledge. Tools building on extensible platforms like Eclipse
(TopBraid Composer®, IODT, OntoStudio®) have clear advantages
regarding their extension and customization as well as the reuse/integration
of existing extensions.

The tools have a clear focus on ontology development in single-user
environments. Only rarely more advanced features like the support of
lifecycle aspects (e.g. in form of version management) or multi-user
capabilities are available: e.g. Protégé offers a plugin for version
management and TopBraid Composer® provides a multi-user mode. The
latter is realized through an interface to the Sesame RDF repository. A
tighter coupling of editor environments with backend technologies such as
reasoners and repositories is a first step of going from single-user editors
towards multi-user ontology engineering and management environments.
The evolution of flexible environments will require modular approaches with
efficient interfaces rather than monolithic editors. The tools currently
available represent the first important steps in this direction.

With the exception of Protégé there is no really hybrid tool supporting
different language paradigms — despite the fact that most tools support
OWL and RDF(S) to a certain degree. With the exception of OntoStudio®,
the rule support of the ontology engineering environments currently
available is rather limited. OntoStudio® on the other hand does not (yet)
offer sufficient OWL (DL) support.

However, a number of industrial applications and the activities around
the standardization of rule languages show that the DL paradigm is
comprehensive too but does not replace rule-based approaches. Large-scale
rule-based applications on the other hand require full rule support, starting
with a well-defined base in form of a rule-language. Other important features
are rule-editing, visualization, debugging, profiling and explanation
capabilities. At the same time there is need to support the current semantic
Web standards including the core features of the languages.

76 Chapter 3

3. REQUIREMENTS FOR ONTOLOGY

MANAGEMENT INFRASTRUCTURES

The analysis shows that the current ontology management tools focus
mainly on the development of single ontologies by single users. In order to
use ontology management in commercial applications this approach has to
be widened largely. Together with other important deficits found in our
analysis we derive the following critical requirements.

3.1 Support for important ontology language paradigms

An important question for an ontology management tool is the kind of
ontology language which is supported by the tool. The OWL ontology
language is now well established as the standard ontology language for
representing knowledge on the Web. At the same time, rule languages, such
as F-Logic, have shown their practical applicability in industrial
environments. Often, ontology-based applications require features from both
paradigms — the description logics and the rule paradigm — but their
combination remains difficult. This is not only due to the semantic
impedance mismatch, but already because of the disjoint landscape in
ontology engineering tools that typically support either the one or the other
paradigm. An ideal ontology management environment will provide support
for ontology languages satisfying a variety of needs. The role of OWL and
Rules as ontology languages in the Semantic Web Stack is shown in Figure
3-7. It illustrates their parallel existence. A common subset like the DLP part
of OWL is not powerful enough. The superset of a logic framework is still
subject to research and cannot be efficiently handled. Therefore OWL and
Rules have to be supported in parallel.

3.2 Support for networked ontologies

Next generation semantic applications will be characterized by a large
number of networked ontologies, some of them constantly evolving, most of
them being locally, but not globally consistent. In such scenarios it will
become prohibitively expensive to adopt current ontology building models,
where the expectation is to produce a single, globally consistent ontology
which serves the application needs of developers and fully integrates a
number of pre-existing ontologies.

3. Ontology Management Infrastructures 77

Figure 3-7 W3C Semantic Web Stack

To address distributed and networked ontology management, current
ontology languages lack a number of features to explicitly express the
relationships between ontologies and their elements. These features include
in particular formalisms for expressing modular ontologies and mappings.
Modular ontologies adopt the established notion of modules in order to
separate ontologies into several parts, which can be developed and managed
independently. Mappings (also called alignments) between ontologies allow
defining relationships between concepts of different ontologies, without
changing the ontologies themselves.

3.3 Lifecycle support

Lifecycle support is quite well established for traditional software
artefacts like procedural programs or database schema. It means to govern
the complete existence of a software artefact from its creation during
software design and development via deployment, production, maintenance
until deprecation and undeployment.

Whereas the initial development of single, static ontologies is well
supported, ontology evolution has been, up to now, a rather poorly
understood and supported aspect of the ontology lifecycle, especially in
distributed environments involving large numbers of networked ontologies.

78 Chapter 3

Therefore, we require means for supporting the application-driven
evolution of ontologies and metadata while guaranteeing the “local
consistency” of networked ontologies, when, for example, one of the
involved ontologies undergoes a change.

While typically today’s environments are ‘closed,’ and focus on a single
or a few individual aspects/phases of the lifecycle, we require an
environment that adequately supports the developer user loop over the
lifecycle of networked ontologies.

Finally, we need to address not only the whole lifecycle of ontology
developments but also the lifecycle of complex semantic applications.
However it is important to emphasize that we are not concerned here with
the “single ontology lifecycle,” but the overall lifecycle of semantic models
which may embed several networked sub-components, each of which may
have its own evolutionary process. For a new generation of large-scale
semantic applications, we will need to provide lifecycle support by
developing appropriate tool support and a reference architecture, which will
enable interoperability between distributed lifecycle support components.
This requires ontology support in a general purpose registry, which keeps
track of the state and other meta-information on all components of such
semantic applications.

3.4 Collaboration support

Large ontologies are built by teams, often distributed across time and
space. Ontology development environments will need to support
collaborative development and, in parallel, provide mechanisms for
detecting and reasoning about the provenance of ontological structures, in
order to generate ‘local,’ consistent views for a single user or a particular
(possibly multi-lingual) group or community.

Collaboration for networked ontologies consists of a set of methods,
techniques, and tools to assist the users in distributed production of one
particular type of formal content, namely ontologies. In addition to the initial
production, the collaborative aspects that need a set of supportive methods
and tools also emerge for the distributed management, maintenance and re-
use of such ontologies.

Additionally, a collaborative framework also requires further
infrastructure: the distributed repository of networked ontologies and a set of
distributing components working as a middleware between the development
environment itself and the distributed repository.

3. Ontology Management Infrastructures 79

4. NEON REFERENCE ARCHITECTURE

In this section we present an overview on the NeOn architecture, which is
targeted to become the reference architecture for ontology management in
large-scale semantic applications. The NeOn reference architecture
integrates functionalities common to today’s ontology management tools and
advances the state-of-the-art by addressing the discussed requirements that
must be met in order to support the lifecycle of ontologies in networked,
distributed, and collaborative environments.

Figure 3-8 NeOn architecture

The general architecture of NeOn is structured into three layers (see
Figure 3-8. The layering is done according to increasing abstraction together
with the data- and process flow between the components. This results in the
following layers:

• Infrastructure services: this layer contains the basic services required by
most ontology applications.

• Engineering components: this middle layer contains the main ontology
engineering functionality realized on the infrastructure services. They
are differentiated between tightly coupled components and loosely
coupled services. Additionally interfaces for core engineering
components are defined, but it is also possible to realize engineering
components with new specific ontology functionality.

80 Chapter 3

• GUI components: user front-ends are possible for the engineering

components but also directly for infrastructure services. There are also a
predefined set of core GUI components.

4.1 Eclipse as an integration platform

The NeOn architecture relies on the architectural concepts of the Eclipse
platform. The Eclipse IDE (integrated development environment) provides
both GUI level components as well as a plugin framework for providing
extensions to the base platform.

The Eclipse platform itself is highly modular. Very basic aspects are
covered by the platform itself, such as the management of modularized
applications (plugins), a workbench model and the base for graphical
components. The real power in the Eclipse platform lies however in the very
flexible plugin concept.

Plugins are not limited to certain aspects of the IDE but cover many
different kinds of functionalities. For example the very popular Java-
development support is not provided by the Eclipse platform but by a set of
plugins. Even functionalities users would consider to be basic (such as the
abstraction and management of resources like files or a help system) are
realized through plugins. This stresses the modular character of Eclipse,
which follows the philosophy that “everything is a plugin.”

Figure 3-9 Plugin concept of Eclipse

A plugin itself can be extended by other plugins in an organized manner.
As shown in Figure 3-9, plugins define extension points that specify the

3. Ontology Management Infrastructures 81

functionality which can be implemented to extend the plugin in a certain
way. An extending plugin implements a predefined interface and registers
itself via a simple XML file. In the XML file the kind of extension as well as
additional properties (such as menu entries) are declared.

4.2 Infrastructure services

The infrastructure services cover support for the underlying ontology
model via the Ontology Model API, as well as reasoning, repository and
registry functionality.

4.2.1 Ontology model API

The NeOn ontology model API is the core ontology interface of the
NeOn infrastructure. It is the main access point for the basic ontology-
related operations such as reading, creating and manipulating models. The
API is meant as a representation of the underlying languages encapsulating
the details of interpretation, persistence, etc. The base of this API is the
KAON2 API. The main feature of the API is its native support for both
OWL and F-Logic as ontology languages.

The integration of OWL and F-Logic in the API is achieved via a
common grounding in a First-Order-Logic (FOL) layer. The APIs for OWL
and F-Logic are realized as extensions of the elements of the FOL API, for
example the interface of OWLClass extends the interface of a FOL
Predicate. While the API is a hybrid API supporting two languages it does
not and is not meant to resolve the conceptual mismatch between different
formal semantics of the languages. It is the base for hybrid applications and
allows harmonizing infrastructure components (such as storage, reasoning
components, etc.).

4.2.2 Reasoner

NeOn reasoners are a core component of the architecture on the
infrastructure level. Accessing the reasoners is performed via a reasoner API
that tightly integrates with the ontology model API described above. The
API supports the management of ontologies as well as reasoning on
ontologies. It thus supports engineering environments as well as runtime
servers.

While in the reference architecture we foresee that both OWL and rule
languages are supported for reasoning, actual implementations may also
support either one of the ontology languages. In the first implementation of
the NeOn reference architecture, we will provide reasoning support for OWL

82 Chapter 3

with the KAON2 reasoner and for F-Logic with the Ontobroker reasoner,
both of which already support the NeOn ontology model and reasoning API.

4.2.3 Repository

The term repository subsumes often a wide variety of functionality. For
the NeOn development architecture the functionality of a development
repository for ontologies is essential. Another important aspect is the
suitability of the repository for reasoning. This has been already discussed in
the state of the art chapter for existing reasoners.

There are use cases where simple repository functionality is sufficient.
However a realistic complete lifecycle support must handle large scale
ontologies. Thus a more sophisticated repository functionality is needed.
Reasoning on large ontologies additionally requires specific repository
functionality for fast access to selected parts of many ontologies.

The repository manages ontologies identified by a unique name given as
an URI in a persistent store. They are organized in a hierarchical, directory-
like structure of collections. The functionality is based on the WebDAV
protocol (Clemm et al., 2002).

The ontology repository manages directly all the artefacts needed for an
ontology-based application including ontologies and other data like XML,
text and binary data. For these artefacts the following basic operations are
available: direct access via an URL, navigation on hierarchical collections
and manipulation operations.

Another repository functionality is versioning. We provide basic
versioning support for ontologies, which will be extended by more advanced
collaboration facilities in specific engineering components. The basic
versioning support is realized via WebDAV versioning, which is offered via
the subversion protocol. The granularity is an ontology document. It includes
check in and checkout facilities.

As ontologies are used to model all kind of data it is in many cases
critical that the access to the ontologies can be controlled completely. This is
especially true in open environments like the Semantic Web.

As the repository functionality is based on the WebDAV functionality the
use of the powerful access control protocol (Clemm et al., 2004) is a
consequent choice. It defines a powerful access protocol where the actors are
user and groups. They can have privileges defined for all operations on any
resource. These access control elements are grouped to access control list for
each resource.

Multi-user capabilities are part of the versioning support. Transactions
are not available at the interface level as the versioning support offers
sufficient mechanisms for isolating the changes of concurrent users. The

3. Ontology Management Infrastructures 83

repository operations are atomic in the sense that their effect is either
completely visible or not all. This is typically realised by transactions of
DBMS. Nevertheless a simple file based realisation is also possible, which
has not that guarantee.

4.2.4 Registry

With the increasing number of ontologies and their increased
fragmentation into networked ontologies the need for an ontology registry is
evident. This is not only true for the Semantic Web environment but also for
large scale semantic applications in an enterprise environment.

The functionality of an ontology registry is based on an ontology meta
model. For NeOn it will be based on the OMV ontology meta model (Palma
et al., 2006). The ontology registry allows to register and query information
about ontologies according to OMV. As this includes the location of an
ontology in form of a directly accessible URL the ontology registry directly
supports the management of networked ontologies.

Besides this functionality for certain scenarios other critical
characteristics are needed.

• Integration with repository: For complete governance in enterprise
environments the registry has to be integrated with the repository.

• Integration with general purpose registry: Opposite to specialized
ontology registry it is necessary for many real world usages of
ontologies that the same registry can handle also other artefacts of the
complete applications. Therefore the integration of the ontology
repository functionality into a general purpose registry is needed.

• Federation: Several registries can act as a federated registry. This means
mechanisms to synchronize the content of the federated registries.
Another functionality are federated registry queries. They will be
distributed to all registries of the federation. The results are sent back to
the registry initiating the federation.

4.3 Engineering components

The engineering components are the main source of functionalities that
end-users typically make use of. An engineering component consists of one
or more plugins. The basic engineering operations (managing elements of
the ontology language) are supported through a core plugin.

Concerning the coupling of plugins to the toolkit we distinguish between
two main categories: tightly and loosely coupled components.

The characteristics of tightly coupled components are

84 Chapter 3

• Highly interactive behaviour
• Fine grained size
• Locally used components
• Repository access

Tightly coupled components are realized as conventional Eclipse plugins.
Examples are Mapping editors or Ontology browsers, i.e. plugins with a rich
graphical interface where frequent user actions invoke process on the
infrastructure layer. A tightly coupled component directly interacts with the
infrastructure layer without any transport layer in between.

The characteristics of loosely coupled components are

• Non interactive behaviour
• Large grain size
• Remotely used components
• own repositories

Thus the loose coupling allows using functionality, which was
independently developed or cannot be easily deployed into the toolkit
environment. Examples are specialized reasoning services or ontology
annotation tools for text, which require a specialized infrastructure.

In the NeOn architecture the loosely coupled components are integrated
as Web services. This requires the realisation of a usually thin Web service
layer on top of the component. If not already available the Web service layer
should be realized in the hosting environment of the component in order to
avoid too many protocol indirections.

4.4 GUI components

The separation between GUI components and engineering components
is — to a certain degree — arbitrary. A GUI component can be a separate
Eclipse-plugin that is the counterpart to another plugin containing the
engineering component or it can be one plugin together with its engineering
component. The latter is suitable if only one GUI component is expected for
the engineering component and both are strongly connected.

Basic GUI components will be part of a minimal configuration of the
toolkit. This includes typical property editors for the management of
language elements like classes and properties.

Additional GUI components include editors built on Eclipse frameworks
such as the text-editor framework, the Eclipse Modeling Framework (EMF)
and the Graphical Modeling Framework (GMF). The latter allows a
declarative, model-driven approach for the creation of graph-based editors
like UML tools. This requires a data model representing the supported

3. Ontology Management Infrastructures 85

language(s) or language subsets which is in line with the underlying
ontology model API (see also section “infrastructure services”).

GUI components require different modes of operation on the underlying
data model. A form-based component e.g. for properties typically allows
incremental updates using the event-management of its sub-components. A
textual component can usually only be synchronized block-wise, depending
on the part of the ontology that can be edited in the editor. In the extreme
case it’s the complete ontology.

5. CONCLUSIONS

In this chapter we have explored infrastructures for ontology
management. We have analyzed state-of-the-art systems for ontology
management. From their deficits we derived critical requirements that must
be met in order to support the lifecycle of ontologies in networked,
distributed, and collaborative environments.

To support the development of next generation semantics-based
applications, we have presented the NeOn architecture — a reference
architecture for ontology management. The NeOn architecture is designed in
an open and modular way and includes infrastructure services such as a
registry and a repository and supports distributed components for ontology
development, reasoning and collaboration in networked environments.

The NeOn toolkit as the reference implementation of the NeOn
architecture is intended as the next generation ontology engineering
environment and platform for semantic applications. In contrast to
“traditional” ontology editors or engineering environments, the NeOn toolkit
is based on a hybrid ontology model, as it natively supports the two major
ontology modelling paradigms: OWL for DL-based ontologies and F-Logic
for Rules and Frame based representations. It is based on the Eclipse
infrastructure and heavily uses its mechanisms e.g. for extensibility and meta
modelling.

It is currently under development and results on planned experiments
with it usage will certainly refine also the reference architecture.

ADDITIONAL READING

To read about challenges that exist related to applying ontologies in real-
world environments, we recommend (Maedche et al., 2003). The authors
present an integrated enterprise-knowledge management architecture,

86 Chapter 3

focusing on how to support multiple ontologies and manage ontology
evolution.

In (Gómez-Pérez et al., 2004) the authors have analyzed methodologies,
tools and languages for building ontologies and argued that the future work
in this field should be driven towards the creation of a common integrated
workbench for ontology developers to facilitate ontology development,
exchange, evaluation, evolution and management. The NeOn toolkit can be
seen as a realization of this vision.

Another comparison and evaluation of ontology engineering
environments can be found in (Mizoguchi, 2004).

REFERENCES

Broekstra, J., Kampman A., van Harmelen, F., 2002, Sesame: A Generic Architecture for
Storing and Querying RDF and RDF Schema, International Semantic Web Conference,
Sardinia, Italy.

Clemm et al., 2002, Web Distributed Authoring and Versioning (WebDAV) Versioning
extensions, IETF Request for comments 3253, http://www.ietf.org/rfc/rfc3253.txt.

Gennari, J., Musen, M. A., Fergerson, R. W., Grosso, W. E., Crubezy , M., Eriksson, H., Noy
N. F., Tu, S. W., 2002, The Evolution of Protégé: An Environment for Knowledge-Based
Systems Development.

Ginsberg A., Hirtle D., McCabe F., Patranjan P., 2006, RIF use cases and requirements,
Working Draft W3C http://www.w3.org/TR/rif-ucr/.

Gómez-Pérez, A, Corcho, O., Fernández-López, M., 2004, Ontological Engineering, Springer.
Grau, B. C., Motik B., Patel-Schneider P., 2006, OWL 1.1 Web Ontology Language, XML

syntax, W3C Note, http://www.w3.org/Submission/owl11-xml_syntax/.
Horrocks, I. et al., 2004, SWRL: A Semantic Web Rule Language — Combining OWL and

RuleML, W3C Member Submission, http://www.w3.org/Submission/SWRL/.
Kalyanpur, A., Parsia, B., Sirin, E., Cuenca, B., Grau, Hendler, J., 2005, SWOOP, A Web

Ontology Editing Browser, Elsevier’s Journal Of Web Semantics (JWS), Vol. 4(2).
Kifer, M., Lausen, G., Wu, J., 1995, Logical foundations of object-oriented and frame-based

languages, Journal of the ACM, Volume 42 , Issue 4, ACM Press, New York.
Knublauch, H., Fergerson, R. W., Noy, N. F., Musen, M. A., 2004, The Protégé OWL Plugin:

An Open Development Environment for Semantic Web Applications, 3rd International
Semantic Web Conference, Hiroshima, Japan.

Maedche, A., Motik, B., Stojanovic, L., Studer, R., and Volz, R., 2003, Ontologies for
Enterprise Knowledge Management. IEEE Intelligent Systems 18, 2, p. 26–33.

Motik, B., Sattler, U., 2006, A Comparison of Reasoning Techniques for Querying Large
Description Logic ABoxes, Proc. of the 13th International Conference on Logic for
Programming Artificial Intelligence and Reasoning, Phnom Penh, Cambodia.

Mizoguchi, R., 2004, Ontology Engineering Environments, in Studer, R., Staab, S. (eds),
Handbook on Ontologies, Springer, p. 275–298.

Noy, N. F., Musen, M. A., 2004, Ontology Versioning in an Ontology Management
Framework, IEEE Intelligent Systems, vol. 19, no. 4, p. 6–13.

Palma, R., Hartmann, J., Gomez-Perez, 2006, A., Towards an Ontology Metadata Standard,
3rd European Semantic Web Conference (ESWC), Budva.

3. Ontology Management Infrastructures 87

Prud’hommeaux, E., Seaborne, A., 2007, SPARQL Query Language for RDF, W3C Working

Draft, http://www.w3.org/TR/rdf-sparql-query/.
Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A., and Katz, Y., 2007, Pellet: A practical OWL-

DL reasoner, Journal of Web Semantics Vol 5(2).

Chapter 4

ONTOLOGY REASONING WITH
LARGE DATA REPOSITORIES

Stijn Heymans1, Li Ma2, Darko Anicic1, Zhilei Ma3, Nathalie Steinmetz1,
Yue Pan2, Jing Mei2, Achille Fokoue4, Aditya Kalyanpur4, Aaron
Kershenbaum4, Edith Schonberg4, Kavitha Srinivas4, Cristina Feier1, Graham
Hench1, Branimir Wetzstein3, Uwe Keller1
1Digital Enterprise Research Institute (DERI), University of Innsbruck, Technikerstrasse 21a,
6020 Innsbruck, {stijn.heymans|darko.anicic|nathalie.steinmetz|cristina.feier|graham.hench|
uwe.keller}@deri.at; 2IBM China Research Lab, Building 19 Zhongguancun Software Park,
Beijing 100094, China, {malli| panyue|meijing}@cn.ibm.com; 3Institute of Architecture of
Application Systems (IAAS), University of Stuttgart, {zhilei.ma| branimir.wetzstein}@iaas.uni-
stuttgart.de; 4IBM Watson Research Center, P.O.Box 704, Yorktown Heights, NY 10598, USA,
{achille|adityakal|aaronk|ediths| ksrinivs}@us.ibm.com

Abstract: Reasoning with large amounts of data together with ontological knowledge is
becoming a pertinent issue. In this chapter, we will give an overviewof well-
known ontology repositories, including native stores and database based
stores, and highlight strengths and limitations of each store. We take Minerva
as an example to analyze ontology storage in databases in depth, as well as to
discuss efficient indexes for scaling up ontology repositories. We then discuss
a scalable reasoning method for handling expressive ontologies, as well as
summarize other similar approaches. We will subsequently delve into the
details of one particular ontology language based on Description Logics called
WSML-DL and show that reasoning with this language can be done by a
transformation from WSML-DL to OWL DL and support all main DL-specific
reasoning tasks. Finally, we illustrate reasoning and its relevance by showing a
reasoning example in a practical business context by presenting the Semantic
Business Process Repository (SBPR) for systemical management of semantic
business process models. As part of this, we analyze the main requirements on
a such a repository. We then compare different approaches for storage
mechanisms for this purpose and show how a RDBMS in combination with
the IRIS inference engine provides a suitable solution that deals well with the
expressiveness of the query language and the required reasoning capabilities
even for large amounts of instance data.

Keywords: business repository; IRIS; OWL DL; reasoning with large datasets; Semantic
Business Process Management; WSML DL

90 Chapter 4

1. INTRODUCTION

Reasoning with large amounts of data together with ontological
knowledge is becoming an increasingly pertinent issue. Especially in the
case of Semantic Web applications, an important question is how to store
respective ontologies and how to reason with them, without losing out of
sight the need for scalability. In the end, the Semantic Web is envisaged to
contain a huge amount of data, and reasoning with ontologies for
maintaining semantical information requires scalable reasoners to extract the
relevant information from these ontologies.

In order to give the reader an overview of existing solutions regarding the
storage of ontologies, we will start this chapter by giving an overview of
existing ontology stores. Furthermore, we will explore the use of relational
databases extensively as an efficient means for storing ontologies.

After discussing how OWL — currently the most prominent ontology
language on the Semantic Web — ontologies can be stored, we will
investigate a particular language, WSML-DL and see how it can be
translated to OWL-DL, thus giving the reader also insight in WSML-DL
reasoning by relating it to the storing capabilities described for OWL in this
chapter.

The first part of this chapter focuses on languages based on Description
Logic, like OWL and WSML-DL. In the final part, we will discuss a Logic
Programming approach, based on WSML-Flight, and see how reasoning
with ontologies can be done in that context.

An important use case for scalable ontology repositories is given by the
area of Business Process Management. The globalization of the economy
and the ongoing change of the market situation challenge corporations to
adapt their business processes in an agile manner to satisfy the emerging
requirements on the market and stay. Business Process Management (BPM)
is the approach to manage the execution of IT-supported business processes
from a business expert’s point of view rather than from a technical
perspective (Smith et al. 2003). However, currently businesses have still
very incomplete knowledge of and very incomplete and delayed control over
their process spaces. Semantic Business Process Management (SBPM)
extends the BPM approach by adopting Semantic Web and Semantic Web
Service technologies to bridge the gap between business and IT worlds
(Hepp et al., 2005).

In both BPM and SBPM, representations of business processes play a
central role. As business processes manifest the business knowledge and
logics of a corporation and normally more than one person or organization
with different expertise and in different geographic locations are involved in
management of business processes, it is advantageous to establish a business

4. Ontology Reasoning with Large Data Repositories 91

process repository (BPR) within a corporation for effective sharing of
valuable business process knowledge. Furthermore, business users tend to
reuse existing business process artifacts during process modeling, so that
they are able to adapt the business processes in a more agile manner.
However, as the number of business processes increases, it is difficult for
them to manage the process models by themselves and to find the required
business process information effectively. A BPR helps business users by
providing a systematic way to manage and obtain information on business
processes.

In SBPM, business process models are based on process ontologies and
make use of other ontologies, such as organizational ontologies or a
Semantic Web Service ontology (Hepp et al. 2007). The BPR has to be able
to cope with these ontological descriptions when storing and retrieving
process models, and in particular support efficient querying and reasoning
capabilities based on the ontology formalism used. In order to distinguish
from traditional BPR technology, we call this kind of repository a Semantic
Business Process Repository (SBPR).

We first analyze the functional requirements on the SBPR. We describe
what kind of functionality the SBPR should offer to its clients, which is
primarily a process modeling tool. We then compare different approaches for
data storage and querying based on the ontological descriptions. The
comparison is based on the expressiveness of the query language, the
scalability of the query processing and the effort for the integration of the
query processing with the underlying data storage. We then finally describe
the overall architecture of the SBPR.

2. ONTOLOGY STORAGE AND REASONING:
AN OVERVIEW

2.1 Ontology repositories

In the past decade, we have seen the development of numerous ontology
repositories for use in Semantic Web applications. In this section, we
classify some well-known repositories based on their storage schemes,
summarize methods to store ontologies in relational databases, and introduce
reasoning methods used by these repositories briefly.

From the representational perspective, an ontology is in essence a
directed, labeled graph, which makes ontology storage highly challenging.
Figure 4-1 shows a classification scheme for ontology repositories based on

92 Chapter 4

Ontology Repositories

Native Stores Database based Stores

Triple File based Stores Hierarchy Stores

Generic RDF Stores Improved Triple Stores

Binary Table based Stores

Figure 4-1. A taxonomy to classify ontology repositories

their storage models. In general, ontology repositories can be divided into
two major categories, which are native stores and database-based stores.
Native stores are directly built on top of the file system, whereas database-
based repositories use relational or object-relational databases as the
underlying backend store; that is, they can build on top of the storage and
retrieval mechanisms and optimizations of those databases. Popular native
stores include OWLIM (Kiryakov at al., 2005), HStar (Chen et al., 2006),
and AllegroGraph (AllegroGraph, 2006). OWLIM and AllegroGraph adopt
simple triple (N-triple) files to store all data, which results in the extremely
fast speed for load and update. It is reported that AllegroGraph can load
RDF data at the speed of more than 10,000 triples per second. OWLIM uses
B+ trees to index triples and AllegroGraph just sorts triples in the order of
(S, P, O), (P, O, S), and (O, S, P), respectively, for indexing purposes. The
triple reasoning and rule entailment engine (TRREE) is utilized by OWLIM,
which performs forward chaining reasoning in main memory, and inferred
results are materialized for query answering. AllegroGraph can expose RDF
data to Racer, a highly optimized DL reasoner (Haarslev & Moller, 2001),
for inference. HStar is a hierarchy store and organizes typeOf triples (namely
concept assertions in description logics terminology) using a class hierarchy
and other non-typeOf triples (namely role assertions) using a property
hierarchy. Because of its hierarchical tree models, it can leverage XML
techniques to support a scalable store. Range labeling, which assigns labels
to all nodes of an XML tree such that the labels encode all ancestor-
descendant relationships between the nodes (Wu et al., 2004), can also
largely improve query performance. Also, HStar uses B+ trees to index
triples. A set of rules derived from OWL-lite is categorized into two groups,
which are executed at load time using forward chaining and are evaluated at
query time using backward chaining, respectively. In particular, reasoning
on SubClassOf or SubPropertyOf could be easily implemented via its
hierarchical trees.

4. Ontology Reasoning with Large Data Repositories 93

Compared with database-based stores, native stores, in general, greatly
reduce the load and update time. However, database systems provide many
query optimization features, thereby contributing positively to query
response time. It is reported in (Ma et al., 2006) that a simple exchange of
the order of triples in a query may increase the query response time of native
stores by 10 times or even more. Furthermore, native stores need to re-
implement the functionality of a relational database such as transaction
processing, query optimization, access control, logging and recovery. One
potential advantage of database-based stores is that they allow users and
applications to access both (1) ontologies and (2) other enterprise data in a
more seamless way at the lower level, namely the level of the database. For
instance, the Oracle RDF store translates an RDF query into a SQL query
which can be embedded into another SQL query retrieving non-RDF data. In
this way, query performance can be improved by efficiently joining RDF
data and other data using well-optimized database query engines. Currently,
lots of research efforts are made on database-based stores. We thus focus on
ontology storage and reasoning in databases in the following, while
comparing it with native stores.

A generic RDF store mainly uses a relational table of three columns
(Subject, Property, Object) to store all triples, in addition to symbol tables
for encoding URIs and literals with internal, unique IDs. Both Jena and the
Oracle RDF store are generic RDF stores. In Jena2 (Wilkinson et al., 2003),
most of URIs and literal values are stored as strings directly in the triple
table. Only the URIs and literals longer than a configurable threshold are
stored in separated tables and referenced by IDs in the triple table. Such a
design trades storage space for time. The property table is also proposed to
store patterns of RDF statements in Jena2. An n-column property table stores
n–1 statements (one column per property). This is efficient in terms of
storage and access, but less flexible for ontology changes. Jena2 provides by
default several rule sets with different inference capability. These rule sets
could be implemented in memory by forward chaining, backward chaining
or a hybrid of forward and backward chaining. The Oracle RDF store
(Murray et al., 2005) is the first commercial system for RDF data
management on top of RDBMS. Particularly, it supports so-called rulebases
and rule indexes. A rulebase is an object that contains rules which can be
applied to draw inferences from RDF data. Two built-in rulebases are
provided, namely RDFS and RDF (a subset of RDFS). A rule index is an
object containing pre-calculated triples that can be inferred from applying a
specified set of rulebases to RDF data. Materializing inferred results would
definitely speed up retrieval. Different from the generic RDF store,
improved triple stores, such as Minerva (Zhou et al., 2006) and Sesame on
top of the MySQL database (Broekstra et al., 2002), manage different types

94 Chapter 4

of triples using different tables. As we can see from the storage schema of
Minerva shown in Figure 4-3, class and property information is separated
from instances, and typeOf triples are isolated from other triples. The
improved triple store is efficient since some self-joins on a big triple table
are changed to some joins among small-sized tables. Both the generic RDF
store and the improved triple store make use of a fixed database schema.
That is, the schema is independent of the ontologies in use. The schema of
binary table based stores, however, changes with ontologies. These kinds of
stores, such as DLDB-OWL (Pan & Heflin, 2003) and Sesame on
PostgreSQL (Broekstra et al., 2002), create a table for each class (resp. each
property) in an ontology. A class table stores all instances belonging to the
same class and a property table stores all triples which have the same
property. Such tables are called binary tables. For the subsumption of classes
and properties, DLDB-OWL exploits database views to capture them,
whereas Sesame leverages the sub-tables from object relational databases so
as to handle them naturally. One of advantages of the binary table based
store is to decrease the traversal space and improve data access for queries.
That is, instances of unrelated classes or properties to a query will not be
accessed. An obvious drawback is the alteration of the schema (e.g., deleting
or creating tables) when ontologies change. Also, this binary table based
approach is not suitable for very huge ontologies having tens of thousands of
classes, such as SnoMed ontology (SnoMed, 2006). Too many tables will
increase serious overhead to the underlying databases.

The above gives an overall introduction to some well-known ontology
repositories, including native stores and database based stores, and highlights
strengths and limitations of each store. It is reported in (Ma et al., 2006) that
Minerva achieves good performance in benchmarking tests. Next, we will
take Minerva as an example to analyze ontology storage in databases in
depth, as well as to discuss efficient indexes for scaling up ontology
repositories. We will then discuss a scalable reasoning method for handling
expressive ontologies, as well as summarize other similar approaches.

2.2 Practical Methods for ontology storage and index in
relational databases

This section discusses methods to store and index ontologies in relational
databases by investigating an improved triple store, namely Minerva (Zhou
et al., 2006). Figure 4-2 shows the component diagram of Minerva, which is
consists of four modules: Import Module, Inference Module, Storage
Module (viz. an RDBMS schema), and Query Module.

4. Ontology Reasoning with Large Data Repositories 95

Persistent Store

OWL
documents

OWL Parser

DB Translator

SPARQL
Processor

UsersUsers

Reasoning

Import

Storage

Query
Answering

TBox
Translator

Query
Adaptor

DL Reasoner Rule Inference
Engine

Figure 4-2. The component diagram of Minerva

The import module consists of an OWL parser and two translators. The
parser parses OWL documents into an in-memory EODM model (EMF
ontology definition metamodel) (IODT, 2005), and then the DB translator
populates all ABox assertions into the backend database. The function of the
TBox translator is two-fold: One task is to populate all asserted TBox
axioms into a DL reasoner, and the other is to obtain inferred results from
the DL reasoner and to insert them into the database. A DL reasoner and a
rule inference engine comprise the inference module. Firstly, the DL
reasoner infers complete subsumption relationships between classes and
properties. Then, the rule engine conducts ABox inference based on the
description logic programs (DLP) rules (Grosof et al., 2003). Currently, the
inference rules are implemented using SQL statements. Minerva can use
well-known Pellet (Sirin & Parsia, 2004) or a structural subsumption
algorithm for TBox inference (IODT, 2005). The storage module is intended
to store both original and inferred assertions by the DL reasoner and the rule
inference engine. However, there is a way to distinguish original assertions
from inferred assertions by a specific flag. Since inference and storage are
considered as an inseparable component in a complete storage and query
system for ontologies, a specific RDBMS schema is designed to effectively
support ontology reasoning. Currently, Minerva can take IBM DB2, Derby,
MySQL and Oracle as the back-end database. The query language supported
by Minerva is SPARQL (Prud’hommeaux & Seaborne, 2006). SPARQL
queries are answered by directly retrieving inferred results from the database
using SQL statements. There is no inference during the query answering
stage because the inference has already been done at the loading stage. Such
processing is expected to improve the query response time.

96 Chapter 4

In summary, Minerva combines a DL reasoner and a rule engine for
ontology inference, followed by materializing all inferred results into a
database. The database schema is well designed to effectively support
inference and SPARQL queries are answered by direct retrieval from the
database. Jena and Sesame have provided support for ontology persistence in
relational databases. They persist OWL ontologies as a set of RDF triples
and do not consider specific processing for complex class descriptions
generated by class constructors (boolean combinators, various kinds of
restrictions, etc). The highlight of Minerva’s database schema is that all
predicates in the DLP rules have corresponding tables in the database.
Therefore, these rules can be easily translated into sequences of relational
algebra operations. For example, Rule Type(x,C) :- Rel(x,R,
y).Type(y,D).SomeValuesFrom(C,R,D) has four terms in the head and body,
resulting in three tables: RelationshipInd, TypeOf and SomeValuesFrom. It is
straightforward to use SQL statements to execute this rule. We just need to
use simple SQL select and join operations among these three tables.
Leveraging well-optimized database engines for rule inference is expected to
significantly improve the efficiency. Figure 4-3 shows the relational storage
model of Minerva.

Figure 4-3. Database schema of Minerva

We categorize tables of the database schema of Minerva into four types:
atomic tables, TBox axiom tables, ABox fact tables and class constructor
tables. The atomic tables include: Ontology, PrimitiveClass, Property,

4. Ontology Reasoning with Large Data Repositories 97

Datatype, Individual, Literal and Resource. These tables encode the URI
with an integer (the ID column), which reduces the overhead caused by the
long URI to a minimum. The hashcode column is used to speed up search on
URIs and the ontologyID column denotes which ontology the URI comes
from. The Property table stores characteristics (symmetric, transitive, etc.) of
properties as well. To leverage built-in value comparison operations of
databases, boolean, date time and numeric literals are separately represented
using the corresponding data types provided by databases. There are three
important kinds of ABox assertions involved in reasoning: TypeOf triples,
object property triples and datatype property triples. They are stored in three
different tables, namely tables TypeOf, RelationshipInd and RelationshipLit.
A view named Relationship is constructed as an entry point to object
property triples and datatype property triples. Triples irrelevant to reasoning,
such as those with rdfs:comment as the property, are stored in the table
Utility. The tables SubClassOf, SubPropertyOf, Domain, Range,
DisjointClass, InversePropertyOf are used to keep TBox axioms. The class
constructor tables are used to store class expressions. Minerva decomposes
the complex class descriptions into instantiations of OWL class constructors,
assigns a new ID to each instantiation and stores it in the corresponding class
constructor table. Taking the axiom Mother ≡ Woman ⊓ ∃hasChild.Person
as an example, we first define S1 for ∃hasChild.Person in Table
SomeValuesFrom. Then I1, standing for the intersection of Woman and S1,
will be defined in Table IntersectionClass. Finally, {Mother ⊑ I1, I1 ⊑

Mother} will be added to the SubClassOf table. Such a design is motivated
by making the semantics of complex class description explicit. In this way,
all class nodes in the OWL subsumption tree are materialized in database
tables, and rule inference can thus be easier to implement and faster to
execute via SQL statements. Also, a view named Classes is defined to
provide an overall view of both named and anonymous classes in OWL
ontologies.

The triple table of three columns (Subject, Property, Object) is also called
a vertical table in data management. In (Agrawal et al., 2001), Agrawal et al.
discussed the advantages of vertical tables over binary tables in terms of
manageability and flexibility. Improved triple stores, including Minerva,
generally adopt vertical tables to store ABox facts. The vertical table is
efficient in space, but its retrieval often requires a 3-way join. This becomes
a bottleneck in the case of complex queries or a large number of records
involved, although using some indexes. Wang et al. (Wang et al., 2002)
gives an insight into why the vertical table sometimes results in long query
response time. Most relational databases transform a user query into a
physical query plan which represents the operations, the method of
performing the operations, and the order of processing the different

98 Chapter 4

operations (Garcia-Molina et al., 2000). A query optimizer of the database
considers multiple physical plans and estimates their costs, and then selects a
plan with the least estimated cost and passes it to the execution engine. So,
the accuracy of the cost estimation seriously affects the efficiency of a query
execution. Usually statistics collected from the base data are used to estimate
the cost of a query plan. The query optimizer builds a histogram for each
column. The histogram contains information about the distribution of the
corresponding column and is stored in a database catalog (Wang et al., 2002,
Poosala et al., 1996, Matias et al., 1998). Apparently, if the statistical
information represented by the histogram is inaccurate, the query optimizer
may make a wrong selection among different physical query plans. Since
values of different properties are stored in the same column of the vertical
table, the corresponding histogram can not accurately reflect the value
distribution of each property. This may affect the query plan selection and
execution of a query which needs to access information in the vertical table.
Wang et al. proposed to build external histograms for values of different
attributes and rewrite the physical query plan based on these external
histograms. That is, with the external histograms, the DBMS query engine
could generate an optimal query plan. Therefore, we can adopt this
optimization method for the performance of triple stores. Sometimes, it is
impossible to apply this method since one needs to access the core engine of
the database. So, it is desirable to leverage indexes as much as possible to
improve ontology repositories.

Currently, most commercial database systems provide primary clustering
indexes. In this design, an index containing one or more keyparts could be
identified as the basis for data clustering. All records are organized on the
basis of their attribute values for these index keyparts by which the data is
ordered on the disk. More precisely, two records are placed physically close
to each other if the attributes defining the clustering index keyparts have
similar values or are in the same range. Clustering indexes could be faster
than normal indexes since they usually store the actual records within the
index structure and the access on the ordered data needs less I/O costs. In
practice, it is not suitable to create an index on a column with few distinct
values because the index does not narrow the search too much. But, a
clustering index on such a column is a good choice because similar values
are grouped together on the data pages. Considering that real ontologies have
a limited number of properties, the property column of triple tables, such as
the RelationshipInd table of Minerva, could be a good candidate for
clustering. So, it is valuable to use clustering indexes on triple tables for
performance purpose.

Similar to normal unclustered indexes, the clustering index typically
contains one entry for each record as well. More recently, Multi-

4. Ontology Reasoning with Large Data Repositories 99

Dimensional Clustering (MDC) (Bhatt et al., 2003) is developed to support
block indexes which is more efficient than normal clustering indexes. Unlike
the primary clustering index, an MDC index (also called MDC table) can
include multiple clustering dimensions. Moreover, the MDC supports a new
physical layout which mimics a multi-dimensional cube by using a physical
region for each unique combination of dimension attribute values. A
physical block contains only records which have the same unique values for
dimension attributes and could be addressed by block indexes, a higher
granularity indexing scheme. Block indexes identify multiple records using
one entry and are thus quite compact and efficient. Queries using block
indexes could benefit from faster block index scan, optimized prefetching of
blocks, as well as lower path length overheads while processing the records.
Evaluation results from (Brunner et al., 2007) showed that the MDC indexes
could dramatically improve query performance (20 times faster and even
more) and the set of indexes P*, (P,O), (S,P,O) on the triple table gives the
best result for most queries on Minerva using DB2, where P* means an
MDC index, other two represent composites unclustered indexes.
Additionally, the MDC index could be built on the table defining typeOf
information, grouping the records by classes.

Currently, the MDC index is a unique feature of DB2. But other popular
databases provide advanced index functionalities as well. Oracle supports
range partitioning which is a single dimension clustering of the data into
partitions. It allows tables, indexes, and index-organized tables to be
subdivided into smaller pieces, enabling these objects to be managed and
accessed at a finer level of granularity. SQL Server and Teradata Non
StopSQL support B+ tree tables. In this scheme, one can define the entire
table as a B+ tree itself clustered on one or more columns. These features are
helpful for the performance of triple stores.

2.3 A scalable ontology reasoning method by
summarization and refinement

Reasoning algorithms that could be scaled to realistic databases are a key
enabling technology for the use of ontologies in practice. Unfortunately,
OWL-DL ontology reasoning using the tableau algorithm is intractable in
the worst case. As we discussed previously, rule inference is adopted for
OWL reasoning by some ontology repositories, and sometimes, inferred
results are materialized for retrieval. But, rule inference cannot realize
complete and sound reasoning of OWL-DL ontologies and maintaining the
update of materialized results is also a non-trivial problem. Here, we
introduce a novel method that allows for efficient querying of SHIN
ontologies with large ABoxes stored in databases. Currently, this method

100 Chapter 4

focuses on instance retrieval that queries all individuals of a given class in
the ABox. This summarization and refinement based method can also be
treated as an optimization that any tableau reasoner can employ to achieve
scalable ABox reasoning.

It is well known that all queries over DL ontologies can be reduced to a
consistency check (Horrocks & Tessaris, 2002), which is usually checked by
a tableau algorithm. As an example, an instance retrieval algorithm can be
realized by testing if the addition of an assertion a : ¬C for a given individual
a results in an inconsistency. If the resulting ABox is inconsistent, then a is
an instance of C. But, it is impractical to apply such a simple approach to
every individual. In most real ontologies, we can observe that 1) individuals
of the same class tend to have the same assertions with other individuals and
2) most assertions are in fact irrelevant for purposes of consistency check.
Motivated by these observations, Fokoue et al. (Fokoue et al., 2006)
proposed to group individuals which are instances of the same class into a
single individual to generate a summary ABox of a small size. Then,
consistency check can be done on the dramatically simplified summary
ABox, instead of the original ABox. By testing an individual in the summary
ABox, all real individuals mapped to it are effectively tested at the same
time.

The SHER reasoner (Dolby et al., 2007) implemented this reasoning
approach on top of Minerva’s storage component (Zhou et al., 2006) and
proved its effectiveness and efficiency on the UOBM benchmark ontology.
It is reported that SHER can process ABox queries with up to 7.4 million
assertions efficiently, whereas the state of the art reasoners could not scale to
this size.

2.4 Other approaches to scaling reasoning over large
knowledge bases

The issue of scaling reasoning over large ABoxes has recently received a
lot of attention from the Semantic Web and Description Logics communities.
Two main approaches have been proposed to tackle it. The first approach
consists in building new algorithms, heuristics and systems that exhibit
acceptable performance on realistic large and expressive knowledge bases.
Proponents of the second approach, on the other hand, advocate reducing the
expressiveness of TBoxes describing large ABoxes so that the worst-case
data complexity1 of reasoning becomes tractable. The summarization and
refinement technique to scale reasoning over large and expressive ABoxes

1 Data complexity refers to the complexity of reasoning over the ABox only assuming that the

TBox is fixed. It measures the complexity of reasoning as a function of the ABox size
only.

4. Ontology Reasoning with Large Data Repositories 101

presented in the previous section is an illustration of research work guided
by the first approach. In this section, we present other important recent work
on reasoning over large and expressive knowledge bases as well as
Description Logics that have been defined with a tractable worst-case data
complexity.

Since state-of-the-art in-memory reasoners, such as Pellet (Sirin &
Parsia, 2004) and Racer (Haarslev & Moller, 2001), offer good performance
on realistic expressive but small knowledge bases, Guo et al. have recently
proposed to decompose large and expressive ABoxes into possibly
overlapping small components that could be separately fed to state-of-the-art
in-memory reasoners. The decomposition is such that the answer to a
conjunctive query over the original ABox is the union of the answers of the
same conjunctive query over each component of the decomposition.
Conservative analyses of the inference rules of the considered DL provide
the understanding of interdependency between ABox assertions. Two ABox
assertions depend on each other if they might be used together to infer new
assertions. The decomposition is such that two assertions that depend on
each other always appear together in a component. Results of initial
experimental evaluation presented in (Guo & Heflin, 2006) are very
promising. Another approach (Hustadt et al., 2004) to efficiently answer
conjunctive queries over large and expressive knowledge bases consists in
transforming any SHIN(D)2 knowledge base into a disjunctive Datalog
program. The advantages of this approach are twofold. First, it leverages
decades of research on optimizations of disjunctive datalog programs (e.g.
magic set transformation). Second, it naturally supports DL-safe rules
(Motik et al., 2004), which can straightforwardly be translated into datalog
rules.

Other researchers have advocated reducing the expressive power in order
to obtain tractable reasoning over large ABoxes. Calvanese et al. have
introduced a family of inexpressive Description Logics, the DL-Lite family,
with data complexity varying from LogSpace to co-NP-hard (Calvanese et
al., 2006). DL-Litecore, the least expressive language in the DL-Lite family,
consists of existential restriction and a restricted form of negation
(Calvanese et al., 2005). The language for DL-Litecore concepts and roles is
defined as follows:

Cl � A | ∃R; Cr �A | ∃R| ¬A | ¬∃R
R � P | P –

where Cl (resp. Cr) denotes a concept that may appear in the left (resp. right)
hand side of a concept inclusion axiom in the TBox. Two simple extensions

2 SHIN(D) is the subset of OWL DL without nominal.

102 Chapter 4

of DL-Litecore, DL-LiteF,6 and DL-LiteR,6 , have been defined and shown to be
FOL-reducible: i.e. answering a conjunctive query in DL-Litecore or in one of
these extensions can be reduced to evaluating a SQL query over the database
corresponding to the ABox. The advantages of these FOL-reducible
languages are straightforward for applications with very limited
expressiveness needs. DL-LiteF,6 extends DL-Litecore by allowing
intersections on the left hand side of concept inclusion axioms and functional
roles; while DL-LiteR,6 extends DL-Litecore by allowing inclusion axioms
between roles, intersections on the left hand side of concept inclusion
axioms, and qualified existential restrictions on the right hand side of
concept inclusion axioms. All the other extensions3 to DL-Litecore are not
FOL-reducible, but, for the most part, they remain tractable. Other
Description Logics with polynomial data complexity include Horn-SHIQ
(Hustadt et al., 2005, Krotzsch et al., 2006), a fragment of SHIQ analogous
to the Horn fragment of first-order logic, and description logic programs
(Grosof et al., 2003).

2.5 Bridging discrepancies between OWL ontologies and
databases

Recently, Semantic Web and ontologies are receiving extensive attention
from data management research. One source of this interest is that ontologies
can be used as semantic models which are able to represent more semantics
of the underlying data. OWL provides numerous constructs to define
complex and expressive models. However, it is gradually recognized that
there are remarkable discrepancies between description logics (the logical
foundation of OWL) and databases. As is well-known, DL is based on an
open world assumption (OWA), permitting incomplete information in an
ABox, while DB adopts a closed world assumption (CWA) requiring
information always understood as complete. The unique name assumption
(UNA) is often emphasized in DB but not in DL. OWL Flight (Bruijn et al.,
2005), furthermore, clarifies restrictions in DL and constraints in DB, of
which the former is to infer and the latter to check. With negation, DBs
prefer to “non-monotonic negation,” while DLs rely on “monotonic
negation.” The following simple example gives us an intuitive understanding
of such discrepancies. In a relational database, if “each employee must be
known to be either male or female” is specified as an integrity constraint, the
database system would check whether the gender of a person is given and set
to be male or female during database updates. If the gender is not specified
as male or female, the update would fail. In an ontology, the same

3 We are not considering extension allowing n-ary predicate with n>2.

4. Ontology Reasoning with Large Data Repositories 103

requirement would naturally be represented by an axiom that Employee is
subsumed by the union of Male and Female. Adding an employee without
expressing he/she is an instance of Male or Female to the ontology would
not result in any errors, and just imply that the employee could be either
Male or Female.

Some research work on extending DLs with integrity constraints are
mainly based on autoepistemic extensions of DLs, such as the description
logics of minimal knowledge and negation-as-failure (MKNF) (Donini et al.,
2002) and some nonmonotonic rule extensions of DLs (Motik et al., 2007).
This may be inspired by Reiter’s observation that integrity constraints
describe the state of the database and have an epistemic nature (Reiter,
1992). Motivated by representing integrity constraints in MKNF, Mei et al.
imposed epistemic operators on union and existential restrictions and
explained them using integrity constraints in an ontology (Mei et al., 2006).
Given the ABox of an SHI ontology is satisfiable with regard to its epistemic
TBox, reasoning on such an ontology could be done by a datalog program.

More recently, (Motik et al., 2006) proposes an extension of OWL that
attempts to mimic the intuition behind integrity constraints in relational
databases. Integrity constraints, introduced in (Mei et al., 2006), are used for
conveying semantic aspects of OWL that are not covered by deductive
databases, while (Motik et al., 2006) extends standard TBox axioms with
constraint TBox axioms, s.t., for TBox reasoning, constraints behave like
normal TBox axioms; for ABox reasoning, however, they are interpreted in
the spirit of relational databases. Acting as checks, constraints are thrown
away, if satisfied, without losing relevant consequences. Algorithms for
checking constraint satisfaction are also discussed in (Motik et al., 2006),
and the complexity of constraint checking is primarily determined by the
complexity of the standard TBox. As a result, answering queries under
constraints may be computationally easier due to a smaller input of the
standard TBox concerning. Currently, (Motik et al., 2006) plans to
implement such an approach in the OWL reasoner KAON2 and tests its
usefulness on practical problems.

Technically, (Motik et al., 2006) defines constraints in the same way as
subsumptions, having the form of C⊑ D where C and D are DL concepts.
Keeping the semantics of DLs unchanged, constraints rely on Herbrand
models for checking satisfiability. Query answering is another reasoning
service, provided the constraints are satisfied, and again uses the standard
semantics of DLs after throwing those constraints away. That is, authors
define TBox axioms, of which some are for inferring (namely, standard
TBox axioms) and some for checking (namely, constraint TBox axioms).
The extended DL system will provide support for DL reasoning as usual, in

104 Chapter 4

addition to checking constraint satisfiability using the well-known methods
of logic programming.

By definition, an extended DL knowledge base is a triple K=(S, C, A)
such that S is a finite set of standard TBox axioms, C is a finite set of
constraint TBox axioms, and A is a finite set of ABox assertions, D(a),
¬D(a), R(a,b), a≈b, a ≠ b, for D an atomic concept, R a role, and a, b
individuals. Checking C in the minimal models of A ∪ S, the algorithm is
sketched as follows (Motik et al., 2006).

1. The standard TBox S is translated into a first-order formula
π(S) according to the standard DL semantics, and the results are further
translated into a (possibly disjunctive) logic program LP(S) = LP(π(S))
which can be exponentially larger than S. For each rule in LP(S) in which
a variable x occurs in the head but not in the body, the atom HU(x) is
added to the rule body. Additionally, for each individual a occurring in A
∪ S, an assertion HU(a) is introduced.

2. The constraint TBox C is translated into a first-order formula π(C), and
CN(C) = CN(π(C)) is constructed as a stratified datalog program. For
each formula ϕ, a unique predicate Eϕ is associated, also µ(ϕ) and sub(ϕ)
are defined, where µ(ϕ) is a translation rule for ϕ and sub(ϕ) is the set of
sub-formulae of ϕ, s.t. the following logic program is computed: CN(ϕ)
= µ(ϕ) ∪ ∪ φ∈sub(ϕ) CN(φ).

As a consequence, K=(S, C, A) satisfies the constraint TBox C if and
only if A∪LP(S)∪CN(C) |=c EC, where |=c denotes the well-known
entailment in stratified (possibly disjunctive) logic programs, and EC = Eπ(C).

Intuitively, CN(C) simply evaluates C and ensures that EC holds in a
model if and only if C is true in the model. Thus, EC is derived if and only if
C is satisfied in all minimal models. Finally, suppose K=(S, C, A) be an
extended DL knowledge base that satisfies C. For any union of conjunctive
queries γ(v) over K=(S, C, A) and any tuple of constants u, it holds that
A∪S∪C |= γ(u) if and only if A∪S |= γ(u).

Not surprising, in query answering, constraints are thrown away, if they
are satisfied. All other reasoning problems look like before, and the existing
DL algorithms can be applied to solve them.

3. REASONING WITH WSML-DL

In this section, we take the approach of looking at another practical
language for ontology reasoning. We focus on reasoning with the
Description Logic-based Ontology language WSML-DL. We use WSML-

4. Ontology Reasoning with Large Data Repositories 105

DL as a more intuitive surface syntax for an expressive Description Logic
(DL) in the WSML family of knowledge representation languages. Its syntax
is inspired by First-order Logic modelling style. The WSML family of
ontology languages is strongly related to the work on the Web Service
Modeling Ontology WSMO and thus potentially very relevant in Semantic
Web Services environments.

WSML-DL is less expressive than OWL DL, given that WSML-DL does
not support nominals. This reduces the complexity of WSML-DL, which is
important for reasoning. In fact, until recently many state-of-the-art DL
reasoners did not support reasoning with nominals, since no good
optimization techniques were known.

To enable the use of existing DL reasoning engines for WSML, we
transform WSML-DL to OWL DL. This is because OWL DL is the
appropriate syntax for DL reasoners as e.g. Pellet or KAON2. Then we
integrate the reasoners into a flexible WSML reasoner framework.

In the following, we first point out the particularities of DL reasoning.
Next we describe the WSML-DL syntax and its correspondence to DLs. We
show the translation from WSML-DL to OWL DL abstract syntax and
explain the architecture and implementation of the WSML2Reasoner
framework.

3.1 Reasoning with description logics

Description Logics can be seen as particularly restricted subset of
Predicate Logic and constitute a family of logic-based knowledge
representation formalisms. They have become a cornerstone of the Semantic
Web for its use in the design of ontologies.

DL knowledge bases are separated into two components: TBoxes,
containing the terminological knowledge of a knowledge base (e.g. concept
definitions), and ABoxes, containing the assertional knowledge (knowledge
about the individuals of a domain).

In DLs, there are different basic reasoning tasks for reasoning with
TBoxes or ABoxes. As described in Baader et al. (2003), the main inference
procedures with TBoxes are concept subsumption and concept satisfiability.
With ABoxes, the main reasoning tasks are ABox consistency and instance
checking.

The OWL community focuses on entailment and query answering as the
key inference services. Entailment can be reduced to satisfiability, while
query answering amounts to compute the result of a query for instances with
specific properties over a database, or an ABox respectively.

http://tools.deri.org/wsml2reasoner/DIPFactSheet.html -
ReasWSMLDLDescriptions of the main standard DL reasoning tasks, as

106 Chapter 4

well as of some main non-standard inference tasks can be found in Baader et
al. (2003).

3.2 WSML-DL

The Web Service Modeling Language WSML (de Bruijn et al., 2005) is a
family of formal Web languages based on the conceptual model of WSMO
(Roman et al., 2004). Conforming to different influences, as e.g. Description
Logics (Baader et al., 2003), Logic Programming (Lloyd, 1987) and First-
order Logic (Fitting, 1996), there exist five variants of WSML: WSML-
Core, WSML-DL, WSML-Flight, WSML-Rule and WSML-Full.

The WSML-DL variant captures the expressive Description Logic
SHIQ(D). The following sections will introduce the WSML-DL syntax and
its correspondence to Description Logics.

3.2.1 WSML-DL syntax

WSML makes a clear distinction between the modelling of conceptual
elements (Ontologies, Web Services, Goals and Mediators) and the
specification of logical definitions. Therefore the WSML syntax is split in
two parts: the conceptual syntax and the logical expression syntax. The
following sections will provide an overview of the WSML-DL conceptual
and the logical expression syntax. A more detailed description can be found
in de Bruijn et al. (2005).

3.2.1.1 WSML-DL conceptual syntax
A WSML ontology specification may contain concepts, relations,

instances, relation instances and axioms. Concepts form the basic
terminology of the domain of discourse and may have instances and
associated attributes. A concept can be defined as subconcept of another
concept, and in this case, a concept inherits all attribute definitions of its
superconcept.

A concept may have an arbitrary number of instances associated to it.
The instance definition can be followed by the attribute values associated
with the instance. Instead of being explicitly defined in the ontology,
instances can exist outside the ontology in an external database.

There are two sorts of attribute definitions that a concept may contain:
inferring definitions with the keyword impliesType and constraining
definitions with the keyword ofType. The constraining definitions may only
be used for datatype ranges. Inferring attribute definitions are similar to
range restrictions on properties in RDFS (Brickley and Guha, 2004) and
OWL (Bechhofer et al., 2004).

4. Ontology Reasoning with Large Data Repositories 107

In WSML-DL only binary relations are allowed. They correspond to the
definition of attributes. The usage of inferring and constraining definitions in
relations corresponds to their usage in attribute definitions. A relation can be
defined as a subrelation of another relation.

A relation may contain relation instances with parameter values
associated to it.

Axioms can be used to refine the definitions already given in the
conceptual syntax, e.g. the subconcept and attribute definitions of concepts.
By defining respective axioms one can define cardinality restrictions and
global transitivity, symmetricity and inversity of attributes, just like in DLs
or OWL. The logical expression syntax is explained in the following section.

3.2.1.2 WSML-DL logical expression syntax
The form of WSML-DL logical expressions and their expressiveness is

based on the Description Logic SHIQ(D). The WSML-DL logical
expression syntax has constants, variables, predicates and logical
connectives, which all are based on First-order Logic modelling style.

An atom in WSML-DL is a predicate symbol with one or two terms as
arguments. WSML has a special kind of atoms, called molecules. There are
two types of molecules that are used to capture information about concepts,
instances, attributes and attribute values: “isa molecules,” that are used to
express concept membership or subconcept definitions, and “object
molecules,” that are used to define attribute and attribute value expressions.

These molecules build the set of atomic formulae in WSML-DL. Using
First-order connectives, one can combine the atomic formulae to
descriptions and formulae. How exactly the molecules can be combined to
build descriptions and formulae can be seen in detail in de Bruijn et al.
(2005).

3.2.2 WSML-DL vs. SHIQ(D)

Table 4-1 illustrates the relationship between the WSML-DL semantics,
the Description Logics syntax and the OWL DL syntax. The table follows de
Bruijn et al (2005), Volz (2004) and Borgida (1996).

In the table, “id” can be any identifier, “dt” is a datatype identifier, “X”
can be either a variable or an identifier and “Y” is a variable.

3.3 Translation of WSML-DL to OWL DL

The following sections show the translation from WSML-DL to OWL
DL abstract syntax (Steinmetz, 2006). The mapping is based on a mapping

108 Chapter 4

from WSML-Core to OWL DL, which can be found in de Bruijn et al.
(2005), and can be applied to WSML ontologies and logical expressions.

Table 4-1. WSML-DL logical expressions — DL syntax
WSML-DL DL Syntax OWL DL
τ(lexpr impliedBy rexpr) rexpr ⊆ lexpr subClassOf
τ(lexpr or rexpr) lexpr ∪ rexpr unionOf
τ(lexpr and rexpr) lexpr ∩ rexpr intersectionOf
τ(neg expr) ¬ expr complementOf
τ(forall Y expr) .R∀ expr allValuesFrom
τ(exists Y expr) .R∃ expr someValuesFrom
τ(X memberOf id) idX : Type
τ(id1 subConceptOf id2) 21 idid ⊆ subClassOf
τ(X1[id hasValue X2]) < X1, X2 > : id Property
τ(id1[id2 impliesType id3]) 3.21 ididid ∀⊆ subPropertyOf
τ(id1[id2 ofType dt]) dtidid .21 ∀⊆ subPropertyOf
τ(p(X1,…,Xn)) < X1,…Xn > : p Type
τ(X1 :=: X2) 21 XX ≡ equivalentClass

3.3.1 Transformation steps

The transformation of a WSML-DL ontology to an OWL DL ontology is
done in a line of single transformation steps that are executed subsequently.

• Relations, subrelations and relation instances are replaced by attributes

and axioms, according to the preprocessing steps described in Steinmetz
(2006).

• All conceptual elements are converted into appropriate axioms specified
by logical expressions. The resulting set of logical expressions is
semantically equivalent to the original WSML ontology.

• Equivalences and right implications in logical expressions are replaced
by left implications.

• Conjunctions on the left side and disjunctions on the right side of inverse
implications are replaced by left implications.

• Complex molecules inside of logical expressions are replaced by
conjunctions of simple ones.

As last step, the resulting axioms and logical expressions are transformed
one by one into OWL descriptions according to the mapping presented in the
following section.

3.3.2 Mapping tables

Tables 4-2 and 4-3 contain the mapping between the WSML-DL syntax
and the OWL DL abstract syntax. The mapping is described through the

4. Ontology Reasoning with Large Data Repositories 109

mapping function τ. In Table 4-3 we will introduce the functions α and ε,
which are needed for the correct translation of WSML-DL descriptions.

Boldfaced words in the tables refer to keywords in the WSML language.
“X” and “Y” are meta-variables and are replaced with actual identifiers and
variables during the translation, while “DES” stands for WSML-DL
descriptions. IRIs4 are abbreviated by qualified names. The prefix ‘wsml’
stands for ‘http://wsmo. org/wsml/wsml-syntax#’ and ‘owl’ stands for
‘http://www.w3.org/2002/07/owl#.’

Table 4-3 shows the mapping of WSML-DL descriptions that are used
inside of axioms, as can be seen in Table 4-2. The descriptions are translated
to concept expressions and to axioms. Concept expressions are again used
within other expressions, while the axioms are added as such to the OWL
ontology. The mapping τ is translated into a tuple of concept expressions and
axioms as follows: τ (DES) = (ε (DES), α (DES)).

The table also indicates a mapping for Qualified Cardinality Restrictions
(QCRs). In WSML-DL the QCRs are represented by a combination of
WSML-DL descriptions. The mapping to OWL DL is done according a
workaround with OWL subproperties, described in Rector (2003).

3.3.3 Restrictions to the transformation

The transformation is not complete, i.e. WSML-DL supports features that
cannot be expressed in OWL DL and that can thus not be translated.
Concretely, OWL DL does not support datatype predicates. They are lost
during the transformation.

3.3.4 Translation example

Table 4-4 shows two simple translation examples of both WSML-DL
conceptual syntax and logical expression syntax. More examples can be
found in Steinmetz (2006).

3.3.5 Architecture and implementation

In the following we will discuss the architecture and the implementation
of a reasoner prototype that allows us to perform reasoning with WSML-DL
ontologies using state-of-the-art reasoning engines by means of a wrapper
component.

4 http://www.ietf.org/rfc/rfc3987.txt

110 Chapter 4

Table 4-2. Mapping WSML-DL ontologies and axioms to OWL DL
WSML-DL OWL-DL Remarks
Mapping for ontologies
τ(ontology id
 header1
 …
 headern
 ontology_element1
 …
 ontology_elementn
)

Ontology(id
τ(header1)
…
τ(headern)
τ(ontology_element1)
…
τ(ontology_elementn)
)

A header can contain
nonFunctionalProperties,
usesMediator and
importsOntology statements. An
ontology_element can be a
concept, a relation, an instance,
a relation instance or an axiom.

τ(nonFunctionalProperties
 id1 hasValue value1
 …
 idn hasValue valuen
endNonFunctionalProperties)

Annotation(id1 τ(value1))
…
Annotation(idn τ(valuen))

For non functional properties on
the ontology level “Annotation”
instead of “annotation” has to
be written.

τ(importsOntology id) Annotation(owl#import id) “id” stands for the identifier of a
WSML file.

τ(usesMediator id) Annotation(
 wsml#usesMediator id)

As OWL doesn’t have the
concept of a mediator, a
wsml#usesMediator annotation
is used.

τ(datatype_id(x1,…,xn)) datatype_id(x1,…,xn)^^
τdatatypes(datatype_id)

τdatatypes maps WSML datatypes
to XML Schema datatypes,
according to de Bruijn et al.
(2005).

τ(id) id In WSML an IRI is enclosed by
_” and “, which are omitted in
OWL abstract syntax.

Mapping for axioms

τ(axiom id log_expr nfp) τ(log_expr) A log_expr can be a logical
expression like the following.
The axiom does not keep its non
functional properties.

τ(id[att_id impliesType
 range_id])

Class(id
 restriction (att_id
 allValuesFrom range_id))
ObjectProperty (att_id)

τ(id[att_id ofType range_id]) Class(id
 restriction (att_id
 allValuesFrom range_id))
DatatypeProperty (att_id)

τ(id1 subConceptOf id2) Class(id1 partial id2)

τ(id[att_id hasValue value]) Individual (id
 value (att_id τ(value)))

 Continued

4. Ontology Reasoning with Large Data Repositories 111

WSML-DL OWL-DL Remarks
τ(id1 memberOf id2) Individual(id1 type(id2))

τ(?x[att_id2 hasValue ?y]
 impliedBy
 ?x[att_id hasValue ?y])

SubProperty(att_id att_id2) A left implication with attribute
values as left-hand and right-
hand sides is mapped to an
OWL subProperty.

τ(?x[att_id hasValue ?y]
 impliedBy
 ?x[att_id hasValue ?z] and
 ?y[att_id hasValue ?z])

ObjectProperty(att_id
 Transitive)

Transitive Property

τ(?x[att_id hasValue ?y]
 impliedBy
 ?y[att_id hasValue ?x])

ObjectProperty(att_id
 Symmetric)

Symmetric Property

τ(?x[att_id hasValue ?y]
 impliedBy
 ?y[att_id2 hasValue ?x])

ObjectProperty(att_id
 inverseOf(att_id2))

Inverse Property

τ(?x memberOf concept_id2
 impliedBy
 ?x memberOf concept_id)

Class(concept_id partial
 concept_id2)

Equivalence of concepts can be
expressed as follows, with A
and B being membership
molecules: “A equivalent B” :=:
“A impliedBy B and B
impliedBy A”.

τ(?x memberOf concept_id
 impliedBy
 ?x[att_id hasValue ?y])

ObjectProperty(att_id
 domain(concept_id))

τ(?y memberOf concept_id
 impliedBy
 ?x[att_id hasValue ?y])

ObjectProperty(att_id
 range(concept_id))

τ(DES1 impliedBy DES2) α(DES1)
α(DES2)
subClassOf(ε(DES2) ε(DES1))

“A impliedBy B” can be written
as “subClassOf(B,A)”.

τ() If τ is applied for a non-
occurring production no
translation has to be made

Table 4-3. Mapping WSML-DL descriptions to OWL DL
WSML-DL OWL-DL — concept

expression ε
OWL-DL — axiom α Remarks

Mapping for descriptions (DES)

τ(?x memberOf id) id Class(id) Membership
molecule.

τ(?x[att_id hasValue
 ?y])

restriction(att_id
 allValuesFrom(
 owl:Thing))

ObjectProperty(att_id) Attribute value
molecule with ?y
being an unbound
variable within the
logical expression.

 continued

112 Chapter 4

WSML-DL OWL-DL — concept

expression ε
OWL-DL — axiom α Remarks

τ(?x[att_id hasValue
 ?y] and
 ?y memberOf id)

restriction (att_id
 someValuesFrom(
 id))

Class(id)
ObjectProperty(att_id)

Attribute value
molecule with ?y
being a bound
variable.

τ(DES1 and … and
 DESn)

intersectionOf(ε(DES1

),…,ε(DESn))
α(DES1)
…
α(DESn)

Conjunction.

τ(DES1 or … or
 DESn)

unionOf(ε(DES1),…,ε
 (DESn))

α(DES1)
…
α(DESn)

Disjunction.

τ(neg DES) complementOf(ε(DES
))

α(DES) Negation.

τ(exists ?x (?y[att_id
 hasValue ?x] and
 DES))

restriction(att_id
 someValuesFrom(
 ε(DES)))

α(DES)
ObjectProperty(att_id)

Existential
quantification.

τ(exists ?x (?x[att_id
 hasValue ?y] and
 DES))

restriction(inverseOf(
 att_id)
 someValuesFrom(
 ε(DES)))

α(DES)
ObjectProperty(att_id)

Existential
quantification with
inverse role.

τ(forall ?x (DES
 impliedBy
 ?y[att_id hasValue
 ?x]))

restriction(att_id
 allValuesFrom(
 ε(DES)))

α(DES)
ObjectProperty(att_id)

Universal
quantification.

τ(forall ?x (DES
 impliedBy
 ?x[att_id hasValue
 ?y]))

restriction(inverseOf(
 att_id)
 allValuesFrom(
 ε(DES)))

α(DES)
ObjectProperty(att_id)

Universal
quantification with
inverse role.

τ(exists ?y1,…,?yn
 (?x [att_id
 hasValue ?y1] and
 … and ?x[att_id
 hasValue ?yn] and
 DES and neg(?y1
 :=: ?y2) and …
 and neg(?yn–1 :=:
 ?yn)))

restriction(att_id’
 minCardinality(n))

α(DES)
ObjectProperty(att_id)
ObjectProperty(att_id’
 range(ε(DES)))
SubPropertyOf(att_id’
 att_id)

(Qualified)
minCardinality
restriction.

τ(forall ?y1,…,?yn+1
 (?y1 :=: ?y2 or …
 or ?yn :=: ?yn+1
 impliedBy
 ?x[att_id hasValue
 ?y1] and … and
 ?x[att_id hasValue
 ?yn+1] and DES)

restriction(att_id’
 maxCardinality(n))

α(DES)
ObjectProperty(att_id)
ObjectProperty(att_id’
 range(ε(DES)))
SubPropertyOf(att_id’
 att_id)

(Qualified)
maxCardinality
restriction.

4. Ontology Reasoning with Large Data Repositories 113

Table 4-4. Translation Example
WSML-DL OWL DL
concept Human
 hasChild impliesType Human
 hasBirthday ofType date

axiom definedBy
 ?x memberOf Man implies neg(?x
 memberOf Woman).

ObjectProperty(hasChild
 domain(Human) range(Human))
DatatypeProperty(hasBirthday
 domain(Human) range(xsd:date))
Class(Human partial)

Class(Man partial)
Class(Woman partial)
SubClassOf(Man complementOf(Woman))

The WSML2Reasoner framework5 is a flexible and highly modular
architecture for easy integration of external reasoning components. It has
been implemented in Java and is based on the WSMO4J6 project, which
provides an API for the programmatic access to WSML documents. Instead
of implementing new reasoners, existing reasoner implementations can be
used for WSML through a wrapper that translates WSML expressions into
the appropriate syntax for the reasoner.

As already said above, the appropriate syntax for many DL Reasoners is
OWL DL. We have implemented the transformation from WSML-DL to
OWL DL using the Wonderweb OWL API (Bechhofer et al., 2003). The
OWL API allows a programmatic access to OWL ontologies. It offers a
high-level abstraction from the Description Logics underlying OWL DL,
what increases the usage of DL knowledge bases in the Semantic Web area.

The WSML2Reasoner framework infrastructure offers an interface that
represents a façade to various DL reasoning engines. The façade provides a
set of usual DL reasoning task methods and mediates between the OWL DL
ontologies produced by the transformation and the reasoner-specific internal
representations. For each new DL reasoning engine that is integrated into the
framework, a specific adapter façade has to be implemented.

The framework currently comes with façades for two OWL DL
reasoners: Pellet7 and KAON28:

• Pellet — Pellet is an open-source Java based OWL DL reasoner. It can
be used directly in conjunction with the OWL API.

• KAON2 — KAON2 is an infrastructure to manage, amongst others,
OWL DL ontologies. It provides a hybrid reasoner that allows datalog-
style rules to interact with structural Description Logics knowledge
bases.

5 http://tools.deri.org/wsml2reasoner/
6 http://wsmo4j.sourceforge.net/
7 http://pellet.owldl.com/
8 http://kaon2.semanticweb.org/

114 Chapter 4

4. SEMANTIC BUSINESS PROCESS REPOSITORY

In the final section of this chapter, we take a look at a practical use of
ontological reasoning with large instance data. In particular, we describe the
requirements on an ontology repository for Semantic Business Process
Management (SBPM) and discuss how the various approaches described in
the previous sections can be combined in order to meet those requirements.

4.1 Requirements analysis

In general, a repository is a shared database of information about
engineered artifacts produced or used by an enterprise (Bernstein et al.
1994). In SBPM, these artifacts are semantic business process models or
process models for short.

Process models are often modeled by business users with help of a
process modeling tool. To support process modeling, the SBPR has to
provide standard functionality of a database management system, such as
storage of new process models, update, retrieval or deletion of existing
process models, transaction support for manipulation of process models and
query capability. The query capability enables business users or client
applications to search process models in the SBPR based on the criteria
specified. We classify the queries into two categories. The first category of
queries can be answered based on the artifacts explicitly stored in the SBPR.
This kind of queries is of the same kind as the queries that traditional
database systems can process. The second category of queries are “semantic
queries”, which can only be processed when the ontological knowledge of
the process models is taken into account.

The modeling of process models can be a time-consuming task. It may
take days or even months for business users to finish modeling a given
business process. Therefore, treating the entire modeling activity related to a
process model as a single transaction is impractical. The SBPR has to
provide check-in and check-out operations, that support long running
interactions, enable disconnected mode of interaction with the SBPR, and
are executed as separate short transactions. In this case the modeling tool
could work in a disconnected mode regarding the SBPR. The process model
in the SBPR can be locked when the modeling tool obtains it (check-out), so
that no other users can modify the process model in the SBPR in the
meantime. After the modeling work has been done the process model is
updated in the SBPR and any locks that have been held for the process
model are released (check-in). Note that the locking mechanism refers only
to the locking of the process models in the SBPR. The process ontologies,
that are stored separately in an ontology store and have been referenced by

4. Ontology Reasoning with Large Data Repositories 115

the process models, are not locked simultaneously. Furthermore, in a
distributed modeling environment several business users may work on the
same process model simultaneously. A fine-grained locking of elements in a
process model enables different business users to lock only the part of the
process model they are working on, thus avoiding producing inconsistent
process models.

Process models may undergo a series of modifications undertaken by
business users. The series of modification is called change history of the
process model. The SBPR represents the change history as versions. A
version is a snapshot of a process model at a certain point in its change
history (Bernstein et al. 1994). In certain industry sectors corporations must
record all the change histories of their process models for government
auditing or for some legal requirements. From the modeling perspective it is
meaningful to keep process models in different versions, so that business
users can simply go back to an old version and develop the process model
from the old version further. Due to these reasons the SBPR has to provide
also versioning functionality, so that the change history of process models
can be documented.

4.2 Comparison of storage mechanisms

As storing and querying process models stored are the main requirements
for the SBPR, we evaluate in this section several options for storage
mechanism and their query capabilities.

A process model is an instance of a process ontology. Process ontologies
which are developed in the SUPER project (SUPER, Hepp et al. 2007)
include the Business Process Modeling Ontology (BPMO); the semantic
Business Process Modeling Notation ontology (sBPMN), which is an
ontological version of Business Process Modeling Notation (BPMN); the
semantic Event Process Chain ontology (sEPC), which is an ontological
version of Event Process Chain (EPC) (Keller 1992); the semantic Business
Process Execution Language ontology (sBPEL), which is a ontological
version of Business Process Execution Language (BPEL) (Andrews 2003).
These ontologies are described using the ontology formalism Web Service
Modeling Language (WSML) (de Bruijn et al. 2005). As said, there are five
variants of WSML available, namely WSML-Core, WSML-DL, WSML-
Flight, WSML-Rule, and WSML-Full, differing in logical expressiveness
and underlying language paradigm. The ontologies considered in this chapter
are formalized using WSML-Flight, which is a compromise between the
allowed expressiveness and the reasoning capability of the ontology
language. In the following, we assume thus that a process model is an
instance of a process ontology, which is specified in WSML-Flight.

116 Chapter 4

For each option we take into account the expressiveness of the query
language, the scalability of the query processing and the effort for the
integration of the query processing with the underlying data storage.
Scalability is a rather fuzzy term. In general, one would understand that in
the context of reasoning. Reasoning is used to infer conclusions that are not
explicitly stated but are required by or consistent with a known set of data
(cf. (Passin, 2004)). A system or a framework is scalable if enlarging the
data-set, which is in our context the set of actual process models that
described using ontologies, leads to a performance loss that is tolerable.
More formal, one could say that reasoning is scalable if augmenting the
input size of the problem, which in this case refers to the ontologies plus the
instance data of the ontologies, leads at most to a polynomial increase of the
time in which reasoning can be performed. With regards to the reasoning
capability, we consider two options, namely the storage mechanism with or
without reasoning capability.

4.2.1 Option 1: Without reasoning capability

For storage mechanisms without reasoning capability we considered
Relational Database Management System (RDBMS) and RDF store, which
have been widely adopted at the time of writing.

Queries against RDBMS are normally formalized using the Structured
Query Language (SQL). SQL is quite powerful and bases on both the
relational algebra and the tuple relational calculus (Siberschatz 2006).
However, it has still some limitations. For example, take a simple query such
as “Find all supervisors of the employee John Smith,” where supervisor is a
binary relation indicating which employees are supervisors of other
employees. This query requires computation of transitive closures on the
personnel hierarchies. It is known that transitive closure can not be
expressed using relational algebra (Libkin 2001, Abiteboul 1995). In SQL
one can express transitive closures using WITH RECURSIVE to create
recursive views, which could be very expensive. Furthermore the
“supervisor” relationship must be stored explicitly in the database system.
Because SQL can express queries that aim at the explicitly stored data, it has
no capability to take into account of the implicit data, which can be derived
from the instances of the ontologies based on the axioms specified there.
This is not sufficient for the requirements on query processing of the SBPR.

De Bruijn (2006) defined a RDF representation of WSML, which allows
storing WSML data in a RDF store. RDF (RDF 2004) store is a framework
providing support for the RDF Schema (RDFS 2004) inference and
querying, which uses a relational database system as the underlying storage
for the RDF data. In this section we only consider RDF stores without third-

4. Ontology Reasoning with Large Data Repositories 117

party inference engine or reasoner integrated. The inference here refers to
the RDFS entailments supported by the RDFS semantics. There are already
several reference implementations of RDF stores like Sesame9. The
inference in such RDF stores is normally based on the RDF schema, which
provides only restricted number of constructs to describe the relationships
between the resources, as well as these between the properties, such as
rdfs:subClassOf, rdfs:subPropertyOf. The query processing of RDF stores is
based on special query languages for RDF data like Simple Protocol and
RDF Query Language (SPARQL) or Sesame RDF Query Language
(SeRQL). Using these query languages, one cannot express transitivity or
transitive closure. Furthermore, these query languages take only into account
explicitly stored data. The implicit data can be derived by the inference
capability. However, the inference capability is very limited in RDF stores.

4.2.2 Option 2: With reasoning capability

Quite naturally, ontology stores (cf. Section 2.1) are a candidate
technology for a Semantic Business Process repository. Jena 2, for example,
is a RDF store, which supports not only native entailment of RDFS
semantics but also third-party inference engines or reasoners. The primary
use of plug-in such inference engine or reasoner is to support the use of
languages such as RDFS and OWL which allow additional facts to be
inferred from instance data and class descriptions, while the default OWL
reasoner in Jena can only perform reasoning on a subset of OWL semantics.
To provide complete support of OWL DL reasoning, one can use external
OWL DL reasoners such as Pellet10, Racer11 or FaCT12. Jena can handle
OWL DL, but there is only a partial bi-directional mapping defined between
WSML-Core and OWL DL, which is not sufficient to fulfill the
requirements of SBPR.

Besides Jena, OWLIM (OWLIM, 2006) is a candidate implementation.
OWLIM enables RDF storage with reasoning capability. OWLIM is a high
performance Storage and Inference Layer (SAIL) for the Sesame repository.
It provides OWL Description Logic Programs (DLP) (Grosof, 2003)
reasoning, based on forward-chaining of entailment rules (Kiryakov, 2005).
As argued in (Kiryakov 2005), OWLIM can query the Knowledge Base
(KB) of 10 million statements with an upload and storage speed of about
3000 statements per second. In order to achieve this, OWLIM materializing
the KB. This means that for every update to the KB, the inference closure of

9 http://www.openrdf.org/index.jsp
10 http://pellet.owldl.com/
11 http://www.racer-systems.com/
12 http://www.cs.man.ac.uk/~horrocks/FaCT/

118 Chapter 4

the program is computed. In an SBPM scenario this means that all
conclusions that can be recursively obtained by applying process ontology
rules, given certain instance data (process models), are computed. This
approach has the advantage that querying or other reasoning tasks are
performed fast because the reasoning was done beforehand. Moreover, one
could store the inference closure in the persistent storage, effectively using
optimization methods for storage. The approach taken in OWLIM shows that
taking into account ontologies does not need to lead to a significant
performance loss per se. Nonetheless, the approach has some disadvantages.

First, OWLIM provides support for a fraction of OWL only. The
supported fragment is close to OWL DLP and OWL-Horst (ter Horst 2005),
which can be mapped to WSML and vice versa. However, the
expressiveness of OWL DLP corresponds to WSML-Core. OWL-Horst is
more powerful than WSML-Core, but it is still not as powerful as WSML-
Flight.

Second, as we already discussed, the reasoning in OWLIM takes the
forward-chaining approach. Forward-chaining means that the reasoner starts
from the facts that are already known and infers new knowledge in an
inductive fashion. The result of forward-chaining can be stored for reuse.
This enables efficient query answering, because all facts needed for the
query processing are already available in the data storage. But in the
meanwhile this introduces also the expensive time and space consuming
operations of data manipulation such as update or delete. Newly added or
updated data leads to computing the inference closure in the SBPR again.
Removal of process models is even more problematic, as facts from the
inference closure that were introduced by this removed process models have
also to be removed from the SBPR, which could lead to additional removal
operations. In the worst case, this could require the recalculation of a large
part of the inference closure. In practice, however, the removal of process
models from the SBPR seems to be an action that is less common. The
OWLIM approach also relies heavily on the fact that the semantics of OWL
DLP and extensions towards OWL Lite are monotonic. The monotonic
semantics allows for incremental additions to the process library, i.e., one
can extend the current inference closure with new inferences. In the presence
of non-monotonism, e.g., negation as failure as for example in WSML-Flight
(de Bruijn 2006), such an incremental approach no longer works, as adding
knowledge may prohibit previously made deductions.

These limitations excluded the direct use of OWLIM as a repository for
process models in the described scenario.

IRIS (Integrated Rule Inference System)13 is an inference engine, which
together with the WSML2Reasoner framework14, supports query answering

13 http://sourceforge.net/projects/iris-reasoner/

4. Ontology Reasoning with Large Data Repositories 119

for WSML-Core and WSML-Flight. In essence, it is a datalog engine
extended with stratified negation15. The system implements different
deductive database algorithms and evaluation techniques. IRIS allows
different data types to be used in semantic descriptions according the XML
Schema specification and offers a number of built-in predicates.
Functionality for constructing complex data types using primitive ones is
also provided. The translation from a WSML ontology description to datalog
is conducted using the WSML2Reasoner component. This framework
combines various validation, normalization and transformation
functionalities which are essential to the translation of WSML ontology
descriptions to set of predicates and rules. Further on, rules are translated to
expressions of relational algebra and computed using the set of operations of
relational algebra (i.e., union, set difference, selection, Cartesian product,
projection etc.). The motivation for this translation lies in the fact that the
relational model is the underlying mathematical model of data for datalog
and there are a number of database optimization techniques applicable for
the relational model. Finally optimized relational expressions serve as an
input for computing the meaning of recursive datalog programs.

The core of the IRIS architecture, as shown in Figure 4-4, is defined as a
layered approach consisting of three components:

• Knowledge Base API,
• Invocation API, and
• Storage API.

The knowledge base API is a top API layer encapsulating central
abstractions of the underlying system (e.g., rule, query, atom, tuple, fact,
program, knowledge base, context etc.). The purpose of this layer is to
define the basic concepts of the data model used in IRIS as well as to define
the functionality for the knowledge base and program manipulation.

The invocation API characterizes a particular evaluation strategy (e.g.,
bottom-up, top-down or a blend of these two strategies) and evaluation
methods for a given strategy which are used with respect to a particular logic
program. IRIS implements the following evaluation methods16:

• Naive evaluation,
• Semi-naive evaluation, and
• Query-subquery (QSQ) evaluation.

14 WSML2Reasoner framework: http://tools.deri.org/wsml2reasoner/
15 IRIS is continuously being developed and the support for non-stratified negation and unsafe

rules is envisioned in coming releases.
16 More evaluation techniques are under development.

120 Chapter 4

The storage layer defines the basic API for accessing data and relation
indexing. A central abstraction in this layer is a relation which contains a set
of tuples and serves as an argument in each operation of relation algebra.
The implementation of IRIS relation is based on Collection and SortedSet
Java interfaces where red-black binary search trees are utilized for indexing.

Current inference systems exploit reasoner methods developed rather for
small knowledge bases. Such systems either process data in the main
memory or use a Relational Database Management System (RDBMS) to
efficiently access and do relational operations on disk persistent relations.
Main memory reasoners cannot handle datasets larger than their memory. On
the other side, systems based on RDBMSs may feature great performance
improvement comparing with main memory systems, but efficient database
techniques (e.g., cost-based query planning, caching, buffering) they utilize
are suited only for EDB relations and not fully deployable on derived
relations.

Invocation API (Request & Result)

Storage & Common Datastructure API

Dyn. Filtering

Evaluation Methods

QSQSemi Naive

Storage & Datastructure Impl.

KB Management API

KB Manage-
ment

D
is

tr
ib

u
ti

o
n

C
o

o
rd

in
at

o
r

Dist-Eval

Dist-ST &
Dist-DS

Context Program / KB ?

Central Abstractions underlying the system (for Query Answering)

Rule / Formula Tuple(Pattern)

Reasoner Connector API

Local / Remote Reasoner ConnectorStateful / less

Dist-Call

Relation

Reflected

Magic Sets

K
B

 C
ha

ng
e

Li
st

en
er

Figure 4-4. IRIS architecture

IRIS is designed to meet the requirements of large-scale reasoning. Apart
from the state-of-the-art deductive methods, the system utilizes database
techniques and extends them for implicit knowledge in order to effectively
process large datasets. We are building an integrated query optimizer. The
estimation of the size and evaluation cost of the intentional predicates will be
based on the adaptive sampling method (Liption 1990, Ruckhaus 2006),
while the extensional data will be estimated using a graph-based synopses of

4. Ontology Reasoning with Large Data Repositories 121

data sets similarly as in Spiegel (2006). Further on, for large scale reasoning
(i.e., during the derivation of large relations which exceeds main memory),
run time memory overflow may occur. Therefore in IRIS we are developing
novel techniques for a selective pushing of currently processed tuples to
disk. Such techniques aim at temporarily lessening the burden of main
memory, and hence to make the entire system capable of handling large
relations.

Based on this comparison, a RDBMS integrated with the IRIS inference
engine was regarded as the most suitable solution to fulfill the requirements
of the SBPR in our use case.

4.3 Proposed solution

In this section, we present the overall architecture of the SBPR based on
the integration of RDBMS technology and the IRIS inference engine. We
utilize a layered architecture consisting of the three layers (1) Semantic
Business Process Repository API, (2) Service Layer, and (3) Persistence
Layer, as illustrated in Figure 4-5.

Service Layer

Version ManagerLock Manager IRIS Framework

Persistence Layer

Semantic Business Process Repository API

Relational Database
System

Service Layer

Version ManagerLock Manager IRIS Framework

Persistence Layer

Semantic Business Process Repository API

Relational Database
System

Figure 4-5. SBPR architecture

Semantic Business Process Repository API

The Semantic Business Process Repository API provides the
programmatic access to the SBPR. It includes the API designed after the
CRUD pattern, which represents the four basic functions of persistent
storage, namely create, retrieve, update and delete. Besides the CRUD API,
the SBPR API also provides check-in and check-out functions for long-

122 Chapter 4

running process modeling. The query API rounds off the SBPR API by
providing programmatic access to the IRIS Framework for query answering.

Service Layer

The Service Layer implements the SBPR API and processing logic of the
SBPR. The Service Layer contains three modules: Lock Manger, Version
Manager, and the IRIS Framework. The Lock Manager takes charge of
requests on locking and unlocking for the process models in the SBPR. A
locking request can only be granted when the process model is not yet
locked. The Version Manager takes care of the management of the versions
of process models. To record the modeling history, every new process model
or changed process model is stored as a new version in the SBPR. The IRIS
Framework takes the responsibility for the query processing in SBPR.

Persistence Layer

The Persistence Layer manages the data access to the underlying
relational database system and provides an abstraction for data access
operations. It provides persistent solutions for persistent objects by adopting
Object Relational Mapping (ORM) middleware such as Hibernate and Data
Access Object (DAO) pattern.

The proposed solution is currently used and evaluated in the SUPER
project17, in which a reference architecture and practical use cases of
Semantic Business Process Management is being developed.

5. CONCLUSIONS AND DIRECTIONS FOR
FUTURE RESEARCH

In this chapter, we have tried to summarize the theoretical challenges and
practical problems of storing ontologies and associated data in a scalable
way while considering the implicit facts of the ontology for query answering
and other tasks.

We gave an overall introduction to some well-known ontology
repositories, including native stores and database based stores, and
highlighted strengths and limitations of each store. It is reported in (Ma et
al., 2006) that Minerva achieves good performance in benchmarking tests.
We took Minerva as an example to analyze ontology storage in databases in

17 http://www.ip-super.org

4. Ontology Reasoning with Large Data Repositories 123

depth, as well as discussed efficient indexes for scaling up ontology
repositories. We then discussed a scalable reasoning method for handling
expressive ontologies, as well as summarized other similar approaches.

We have presented a framework for reasoning with Description Logic
based on WSML as a formalism of particular relevance in the field of
Semantic Web services. Our framework builds on top of a transformation
from WSML-DL to OWL-DL and supports all main DL-specific reasoning
tasks. We thus linked the work for storing OWL ontologies, to the work on
WSML-DL, providing the reader with an insight in storing and reasoning
with both OWL-DL and WSML-DL ontologies.

As a practical use case of storing ontologies and reasoning with them, we
presented our work on developing aSemantic Business Process Repository
(SBPR) for the semantically supported management of business process
models. We first analyzed the main requirements on SBPR. Then, we
compared different approaches for storage mechanisms and showed how
combining a RDBMS with the IRIS inference engine was a suitable solution,
due to the expressiveness of the query language and the required reasoning
capability. The IRIS inference engine is currently a WSML-Flight reasoner.
The system is extensively being developed to support reasoning with
WSML-Rule (i.e., support for function symbols, unsafe rules and non-
stratified negation). Further on, IRIS will tightly integrate a permanent
storage system designed for distributed scalable reasoning. One of our major
objectives is the implementation of Rule Interchange Format (RIF)18 in IRIS.
Implementing RIF, IRIS will be capable of handling rules from diverse rule
systems and will make WSML rule sets interchangeable with rule sets
written in other languages that are also supported by RIF. Finally, IRIS will
implement novel techniques for reasoning with integrating frameworks
based on classical first-order logic and nonmonotonic logic programming as
well as techniques for Description Logics reasoning.

ADDITIONAL READING

For more information on reasoning with ontologies and knowledge
representation in general we suggest the two books by Baader et al (2003)
and Baral (2003). The former provides an excellent introduction to
Description Logic reasoning, while the second will get the reader up-to-date
in the area of declarative knowledge representation with logic programming.

18 Rule Interchange Format-W3C Working Group: http://www.w3.org/2005/rules/

124 Chapter 4

REFERENCES

AllegroGraph, http://www.franz.com/products/allegrograph/index.lhtml, 2006
SnoMed Ontology, http://www.snomed.org/snomedct/index.html, 2006
IODT, IBM’s Integrate Ontology Development Toolkit,

http://www.alphaworks.ibm.com/tech/semanticstk, 2005
Abiteboul, Serge; Hull, Richard; Vianu, Victor: Foundations of Databases. Addison-Wesley,

1995
Agrawal, R., Somani, A., and Xu, Y., 2001, Storage and Querying of E-Commerce Data. In

Proceedings of the 27th International Conference on Very Large DataBases, pages 149–
158, Morgan Kaufmann.

Andrews, Tony; Curbera, Francisco; Dholakia, Hitesh; et al.: Business Process Execution
Language for Web Services Version 1.1. 5 May 2003

Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D. and Patel-Schneider, P. F., 2003, The
Description Logic Handbook. Cambridge University Press.

Baral, C.Knowledge Representation, Reasoning and Problem Solving. Cambridge University
Press, 2003.

Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D. L., Patel-
Schneider, P. F., and Stein, L. A., 2004, Owl web ontology language reference. Technical
report. Available from: http://www.w3.org/TR/owl-ref/.

Bechhofer, S., Volz R. and Lord P.W., 2003, Cooking the Semantic Web with the OWL API,
in: International Semantic Web Conference, pp. 659–675.

Bernstein, Philip A.; Dayal, Umeshwar: An Overview of Repository Technology. In VLDB
1994.

Bhattacharjee, B., Padmanabhan, S., and Malkemus, T., 2003, Efficient Query Processing for
Multi-Dimensionally Clustered Tables in DB2, In Proceedings of the 29th Conference on
Very Large Data Bases, pages 963–974, Morgan Kaufmann.

Borgida, A., 1996, On the relative expressiveness of description logics and predicate logics.
Artificial Intelligence 82(1–2):353–367. Available from:
http://citeseer.ist.psu.edu/borgida96relative.html.

BPMN, Business Process Modeling Notation Specification. OMG Final Adopted
Specification, February 6, 2006

Brickley, D. and Guha, R. V., 2004, Rdf vocabulary description language 1.0: Rdf schema.
Technical report. Available from: http://www.w3.org/TR/rdf-schema/.

Broekstra, J., Kampman, A., and Harmelen, van F., 2002, Sesame: A generic architecture for
storing and querying RDF and RDF schema. In Proceedings of the 1st International
Semantic Web Conference, volume 2342 of Lecture Notes in Computer Science, pages
54–68, Springer.

de Bruijn, J.; Kopecký, Jacek; Krummenacher, Reto: RDF Representation of WSML. 20
December 2006

de Bruijn, J., Lausen, H., Krummenacher, R., Polleres, A., Predoiu, L., Kifer, M., and Fensel,
D., 2005, The web service modeling language WSML. WSML Final Draft D16.1v0.21,
WSML. Available from: http://www.wsmo.org/TR/d16/d16.1/v0.21/.

de Bruijn, J., Polleres, A., Lara, R., and Fensel, D., 2005, OWL DL vs. OWL Flight:
Conceptual Modeling and Reasoning on the Semantic Web. In Proceedings of the 14th
International Conference on the World Wide Web.

Brunner, J., Ma, L., Wang, C., Zhang, L., Wolfson, D. C., Pan, Y., and Srinivas, K., 2007,
Explorations in the Use of Semantic Web Technologies for Product Information
Management. In Proceedings of the 16th International Conference on the World Wide
Web. To appear.

4. Ontology Reasoning with Large Data Repositories 125

Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., and Rosati, R., 2005, DL-Lite:

Tractable Description Logics for Ontologies. In Proceedings of the 12th National
Conference on Artificial Intelligence, pages 602–607.

Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., and Rosati, R., 2006, Data
Complexity of Query Answering in Description Logics. In Proceedings of the 10th
International Conference on the Principles of Knowledge Representation and Reasoning,
pages 260–270, AAAI Press.

Chen, Y., Ou, J., Jiang, Y., and Meng, X., 2006, HStar-a Semantic Repository for Large Scale
OWL Documents. In Proceedings of the 1st Asian Semantic Web Conference, volume
4185 of Lecture Notes in Computer Science, pages 415–428, Springer.

Das, S., Chong, E.I., Eadon, G., and Srinivasan, J., 2004, Supporting Ontology-Based
Semantic matching in RDBMS. In Proceedings of the 30th International Conference on
Very Large Data Bases, pages 1054–1065.

Dolby, J., Fokoue, A., Kalyanpur, A., Kershenbaum, A., Ma, L., Schonberg, E., and Srinivas,
K., 2007, Scalable semantic retrieval through summarization and refinement. IBM
Technical report, 2007.

Donini, M. F., Nardi, D., and Rosati, R., 2002, Description Logics of Minimal Knowledge
and Negation as Failure. ACM Transactions on Computational Logic, 3(2):177–225.

Fitting, M., 1996, First-Order Logic and Automated Theorem Proving. 2nd ed., Springer-
Verlag, New York.

Fokoue, A., Kershenbaum, A., Ma, L., Schonberg, E., and Srinivas, K., 2006b, The summary
abox: Cutting ontologies down to size. In Proceedings of the 5th International Semantic
Web Conference, volume 4273 of Lecture Notes in Computer Science, pages 343–356,
Springer.

Garcia-Molina, H., Ullman, J., and Widom, J., 2000, Database System Implementation.
Prentice-Hall.

Grosof, B., Horrocks, I., Volz, R., and Decker, S., 2003, Description logic programs:
combining logic programs with description logic. In Proceddings of the 12th International
Conference on the World Wide Web, pages 48–57.

Guo, Y., and Heflin, J., 2006, A Scalable Approach for Partitioning OWL Knowledge Bases.
In Proceedings of the 2nd International Workshop on Scalable Semantic Web Knowledge
Base Systems.

Haarslev, V., and Moller, R., 2001, RACER System Description. In Proceedings of
Automated Reasoning, the 1st International Joint Conference.

Hepp, Martin; Leymann, Frank; Domingue, John; Wahler, Alexander; Fensel, Dieter:
Semantic Business Process Management: A Vision Towards Using Semantic Web
Services for Business Process Management. Proceedings of the IEEE ICEBE 2005,
October 18–20, Beijing, China, pp. 535–540.

Hepp, Martin; Roman, Dumitru: An Ontology Framework for Semantic Business Process
Management, Proceedings of Wirtschaftsinformatik 2007, February 28–March 2, 2007,
Karlsruhe.

Horrocks I., Patel-Schneider P.F., van Harmelen F., 2003, From SHIQ and RDF to OWL: The
making of a Web Ontology Language, J. of Web Semantics, 1570–8268, pp. 7–26,
Available from:
http://www.cs.man.ac.uk/~horrocks/Publications/download/2003/HoPH03a.pdf

Horrocks, I., and Tessaris, S., 2002, Querying the semantic web: a formal approach. In
Proceedings of the 1st International Semantic Web Conference, volume 2342 of Lecture
Notes in Computer Science, pages 177–191, Springer.

126 Chapter 4

Hustadt, U., Motik, B., and Sattler, U., 2004, Reducing SHIQ Descrption Logic to Disjunctive

Datalog Programs. In Proceedings of the 9th International Conference on Knowledge
Representation and Reasoning, pages 152–162.

Hustadt, U., Motik, B., and Sattler, U., 2005, Data Complexity of Reasoning in Very
Expressive Description Logics. In Proceedings of the 19th International Joint Conference
on Artificial Intelligence, pages 466–471.

JENA, http://jena.sourceforge.net/index.html
Keller, G.; Nüttgens, M.; Scheer, A.-W.: Semantische Prozeßmodellierung auf der Grundlage

“Ereignisgesteuerter Prozeßketten (EPK)”, in: Scheer, A.-W. (Hrsg.): Veröffentlichungen
des Instituts für Wirtschaftsinformatik, Heft 89, Saarbrücken 1992.

Kiryakov, A., Ognyanov, D., and Manov, D, 2005, OWLIM — a pragmatic semantic
repository for OWL. In Proceedings of the 2005 International Workshop on Scalable
Semantic Web Knowledge Base Systems.

Kiryakov, Atanas; Ognyanov, Damyan; Manov, Dimitar: OWLIM — a Pragmatic Semantic
Repository for OWL. In Proc. of Int. Workshop on Scalable Semantic Web Knowledge
Base Systems (SSWS 2005), WISE 2005, 20 Nov, New York City, USA.

Krotzsch, M.., Rudolph, S., and Hitzler, P., 2006, On the complexity of Horn description
logics. In Proceedings of the 2nd Workshop OWL Experiences and Directions.

Libkin, Leonid: Expressive Power of SQL. The 8th International Conference on Database
Theory. London, United Kingdom, 2001

Lipton, Richard and Naughton, Jeffrey. Query size estimation by adaptive sampling (extended
abstract). In PODS ’90: Proceedings of the ninth ACM SIGACTSIGMOD-SIGART
symposium on Principles of database systems, pages 40–46, New York, NY, USA, 1990.
ACM Press.

Lloyd, J. W., 1987, Foundations of Logic Programming. 2nd ed., Springer-Verlag, New
York.

Ma, L., Yang, Y., Qiu, Z., Xie, G., Pan, Y., and Liu. S., 2006, Towards a complete owl
ontology benchmark. In Proceedings of the 3rd Europe Semantic Web Conference, volume
4011 of Lecture Notes in Computer Science, pages 125–139, Springer.

Matias, Y., Vitter, J. S., and Wang, M., 1998, Wavelet-based histograms for selectivity
estimation. In Proceedings of the ACM SIGMOD International Conference on
Management of Data.

Mei, J., Ma, L., and Pan, Y., 2006, Ontology Query Answering on Databases. In Proceedings
of the 5th International Semantic Web Conference, volume 4273 of Lecture Notes in
Computer Science, pages 445–458, Springer.

Motik, B., Sattler, U., and Studer, R., 2004, Query Answering for OWL-DL with Rules. In
Proceedings of the 3th International Semantic Web Conference, volume 3298 of Lecture
Notes in Computer Science, pages 549–563, Springer.

Motik, B., Horrocks, I., and Sattler, U., 2006, Integrating Description Logics and Relational
Databases. Technical Report, University of Manchester, UK.

Motik, B., and Rosati, R., 2007, A Faithful Integration of Description Logics with Logic
Programming. In Proceedings of the 20th International Joint Conference on Artificial
Intelligence.

Murray C., Alexander N., Das S., Eadon G., Ravada S., 2005, Oracle Spatial Resource
Description Framework (RDF), 10g Release 2 (10.2).

OWLIM — OWL semantics repository. 2006. http://www.ontotext.com/owlim/
Pan, Z., and Heflin, J., 2003, DLDB: Extending relational databases to support semantic web

queries. In Proceddings of Workshop on Practical and Scaleable Semantic Web Systems.
Passin, Thomas B.: Explorer’s Guide to the Semantic Web. Manning, 2004.

4. Ontology Reasoning with Large Data Repositories 127

Prud’hommeaux, E., Seaborne, A., eds., 2005, SPARQL Query Language for RDF.W3C

Working Draft.
Poosala, V., Ioannidis, Y. E., Haas, P. J., and Shekita, E., 1996, Improved histograms for

selectivity estimation of range predicates. In Proceedings of the ACM SIGMOD
International Conference on Management of Data.

RDF Primer, W3C Recommendation 10 February 2004. http://www.w3.org/TR/rdf-primer
RDF Vocabulary Description Language 1.0: RDF Schema. W3C Recommendation 10

February 2004
Rector, A., 2003, Message to public-webont-comments@w3.org: ”case for reinstatement of

qualified cardinality restrictions.” Available from:
http://lists.w3.org/Archives/Public/public-webontcomments/2003Apr/0040.html.

Reiter, R., 1992, What Should a Database Know? Journal of Logic Programming, 14(1–
2):127–153.

Roman, D., Lausen, H., and Keller, U., 2004, Web service modeling ontology (WSMO).
WSMO final draft d2v1.2. Available from: http://www.wsmo.org/TR/d2/v1.2/.

Rosati, R., 2006, DL + log: A Tight Integration of Description Logics and Disjunctive
Datalog. In Proceedings of the 10th International Conference on the Principles of
Knowledge Representation and Reasoning, pages 68–78, AAAI Press.

Ruckhaus, Edna and Ruiz, Eduardo. Query evaluation and optimization in the semantic web.
In Proceedings of the ICLP’06 Workshop on Applications of Logic Programming in the
Semantic Web and Semantic Web Services (ALPSWS2006), Washington, USA, August
16 2006.

Siberschatz, Abraham; Korth, Henry F.; Sudarshan, S.: Database System Concepts. Fifth
Edition, McGraw-Hill, 2006.

Sirin, E., and Parsia, B., 2004, Pellet: An OWL DL Reasoner. In Proceedings of Workshop on
Description Logic.

Smith, Howard; Fingar, Peter: Business Process Management. The Third Wave. Meghan-
Kiffer,US 2003.

Spiegel, J. and Polyzotis, N. Graph-based synopses for relational selectivity estimation. In
SIGMOD ’06: Proceedings of the 2006 ACM SIGMOD international conference on
Management of data, pages 205–216, New York, NY, USA, 2006. ACM Press.

Steinmetz, N., 2006, WSML-DL Reasoner. Bachelor thesis, Leopold-Franzens University
Innsbruck. Available from: http://www.deri.at/fileadmin/documents/thesis/dlreasoner.pdf

SUPER, The European Integrated Project — Semantics Utilised for Process Management
within and between Enterprises. http://www.ip-super.org/

ter Horst, Herman J.: Combining RDF and Part of OWL with Rules: Semantics, Decidability,
Complexity. In Proc. of ISWC 2005, Galway, Ireland, November 6–10, 2005. LNCS 3729,
pp. 668–684.

Volz, R., 2004, Web Ontology Reasoning with Logic Databases. PhD thesis, Fridericiana
University Karlsruhe.

Wang, M., Chang, Y., and Padmanabhan, S., 2002, Supporting Efficient Parametric Search of
E-Commerce Data: A Loosely-Coupled Solution. In Proceedings of the 8th International
Conference on Extending Database Technology, pages 409–426.

Wilkinson, K., Sayers, C., Kuno, H. A., and Reynolds, D., 2003, Efficient RDF storage and
retrieval in Jena2. In Proceedings of VLDB Workshop on Semantic Web and Databases,
pages 131–150.

Wu, XD, Lee, ML, Hsu, W., 2004, A prime number labeling scheme for dynamic ordered
XML trees. In Proceedings of the 20th Int’l Conf. on Database Engineering (ICDE). pages
66–78, IEEE Computer Society.

128 Chapter 4

Zhou, J., Ma, L., Liu, Q., Zhang, L., Yu, Y., and Pan, Y., 2006, Minerva: A Scalable OWL

Ontology Storage and Inference System. In Proceedings of the 1st Asian Semantic Web
Conference, volume 4185 of Lecture Notes in Computer Science, pages 429–443,
Springer.

III. EVOLUTION, ALIGNMENT,
AND THE BUSINESS
PERSPECTIVE

Chapter 5

ONTOLOGY EVOLUTION
State of the Art and Future Directions

Pieter De Leenheer1 and Tom Mens2

(1) Semantics Technology & Applications Research Lab, Vrije Universiteit Brussel, Pleinlaan
2, B-1050 BRUSSELS 5, Belgium, pdeleenh@vub.ac.be; (2) Software Engineering Lab,
Université de Mons-Hainaut, 6 Avenue du champ de Mars, B-7000 MONS, Belgium,
tom.mens@umh.ac.be; (2) LIFL (UMR 8022), Université Lille 1 - Projet INRIA ADAM Cité
Scientifique, 59655 Villeneuve d’Ascq Cedex, France

Abstract: The research area of ontology engineering seems to have reached a certain
level of maturity, considering the vast amount of contemporary methods and
tools for formalising and applying knowledge representation models.
However, there is still little understanding of, and support for, the evolutionary
aspects of ontologies. This is particularly crucial in distributed and
collaborative settings such as the Semantic Web, where ontologies naturally
co-evolve with their communities of use. For managing the evolution of single
ontologies, established techniques from data schema evolution have been
successfully adopted, and consensus on a general ontology evolution process
model seems to emerge. Much less explored, however, is the problem of
evolution of interorganisational ontologies. In this “complex” and dynamic
setting, a collaborative change process model requires more powerful
engineering, argumentation and negotiation methodologies, complemented by
support for context dependency management.. It turns out that much can be
learned from other domains where formal artefacts are being collaboratively
engineered. In particular, the field of system engineering offers a wealth of
techniques and tools for versioning, merging and evolving software artefacts,
and many of these techniques can be reused in an ontology engineering
setting. Based on this insight, this chapter gives a unified overview of the wide
variety of models and mechanisms that can be used to support all of the above
aspects of ontology evolution. The key remaining challenge is to construct a
single framework, based on these mechanisms, which can be tailored for the
needs of a particular environment.

Keywords: collaborative ontology engineering; context dependency management;
ontology evolution; ontology versioning

132 Chapter 5

1. INTRODUCTION

The considerable amount of methods and tools for formalising (Sowa,
1984; Gruber, 1993; Guarino, 1998; Meersman, 1999) and applying
knowledge representation (KR) models that is available today, suggests that
the area of knowledge engineering has come to a state of stable maturity.
However, there is still little understanding of, and support for, the
evolutionary aspects of knowledge — in its most concrete manifestation
called an ontology. This is particularly crucial in distributed and
collaborative settings such as the Semantic Web, where ontologies naturally
co-evolve with their communities of use (de Moor et al., 2006).

For managing the evolution of single ontologies, established techniques
from data schema evolution have been successfully adopted, and consensus
on a generally agreed ontology evolution process model seems to emerge
(Maedche et al., 2003). Much less explored, however, is the evolution of
interorganisational ontologies, which are usually engineered in distributed
and collaborative settings. In such settings, different organisations
collaboratively build a common ground of the domain. Ontologies are
instrumental in this process by providing formal specifications of shared
semantics. Such semantics are a solid basis to define and share (business)
goals and interests, and ultimately develop useful collaborative services and
systems.

However, scalable ontology engineering is hard to do in
interorganisational settings where there are many pre-existing organisational
ontologies and ill-defined, rapidly evolving collaborative requirements. A
complex socio-technical process of ontology alignment and meaning
negotiation is therefore required (de Moor et al., 2006). Furthermore,
sometimes it is not necessary (or even possible) to reach for context-
independent ontological knowledge, as most ontologies used in practice
assume a certain context and perspective of some community (Schoop et al.,
2006). Much valuable work has been done in the Semantic Web community
on the formal aspects of ontology elicitation and application. However, the
socio-technical aspects of the ontology engineering process in complex and
dynamic realistic settings are still little understood, and introduce new
problems in ontology evolution that where so far not unified.

One of the most important problems in collaborative ontology
engineering is the detection and resolution of meaning ambiguities and
conflicts during the elicitation and application of ontologies (De Leenheer
and de Moor, 2005). The problem is principally caused by three facts: (i) no
matter how expressive ontologies might be, they are all in fact lexical
representations of concepts, relationships, and semantic constraints; (ii)
linguistically, there is no bijective mapping between a concept and its lexical

5. Ontology Evolution 133

representation; and (iii) terms can have different meaning in different
contexts of use. Consider for example phenomena such as synonyms and
homonyms. Furthermore, ontologies are particularly elicited from tacit
knowledge which is subjective and difficult to articulate. Resulting
misunderstandings and ambiguities can have adverse consequences for the
cost-effectiveness and viability of ontologies as a solution to a given
problem.

Therefore, more powerful support for versioning and merging is required
in order for domain experts to collaboratively and incrementally, build and
manage increasingly complex versions of ontological elements and their
diverging and converging relationships. Instead of being frustrated by out-
of-control change processes, proper ontology versioning support will allow
human experts to focus on the much more interesting meaning elicitation,
interpretation, and negotiation process. It turns out that much can be learned
from other domains where formal artefacts are being collaboratively
engineered. In particular, the field of system engineering offers a wealth of
techniques and tools for versioning, merging and evolving software artefacts
(Mens, 2002), and many of these techniques can be reused in an ontology
engineering setting.

Regardless of the complexity of the ontology engineering setting, what is
currently lacking is a unified overview of the wide variety of models and
mechanisms that can be used to support all of the above aspects of ontology
evolution. Such an overview should not be restricted to data and knowledge
engineering literature above as apparently much can be learned from other
domains where formal artefacts are being engineered and evolved (De
Leenheer et al., 2007). The key remaining challenge is to construct a single
change management framework, based on these mechanisms, which can be
tailored for the needs of a particular community of use.

This chapter is organised as follows. In Section 2 we consider the
dynamic aspects of ontology engineering. Next, in Section 3, we introduce a
context-independent evolution process model for ontologies that are
developed and evolved by a single user. We describe the essential activities
of this process and substantiate these with a survey of existing approaches,
including work that has been done in other system engineering domains such
as software engineering and database engineering. Section 4 considers the
collaborative and distributed aspects of ontology engineering. From these
observations we come up with a community-goal-driven change process
model. We characterise the alternative methodological approaches and
socio-technical aspects to be considered when multiple knowledge workers
collaborate to the ontology. We address typical problems in this setting such
as meaning negotiation and argumentation methods, and context dependency
management. We provide a survey of existing approaches from different

134 Chapter 5

system engineering domains, and discuss future challenges (Section 5).
Finally, we complete with an overview of state-of-the-art ontology evolution
tools (Section 6), a digest for additional reading (Section 7).

2. THE DYNAMIC ASPECTS OF ONTOLOGY
ENGINEERING

Communication is the primary basis for coordinated action (and hence
achieving goals) between different and diverse communities. When a
communication breakdown occurs, it is important to capture and agree on
the semantics of the concepts being communicated. Consider for example
the business goal for delivering goods between the producer of the goods,
and its delivery service. Implementing such a new delivery line requires
agreement about a new workflow model, and the types of products that are
to be delivered. This implies a number of change requests, which are
formulated by the knowledge engineer in terms of ontology engineering
processes.

2.1 Ontology engineering processes

In (De Leenheer et al., 2007), we identified some important types of
context-driven ontology engineering processes that address these issues.
These are macro-level processes in that they (in a particular methodological
combination) provide the goals of the ontology engineering process. These
include lexical grounding (and word sense disambiguation), attribution (of
concepts), specialisation, axiomatisation, and operationalisation. In their
operational implementation, which we respectively call OE micro-processes,
methodologies differ widely.

Figure 5-1 illustrates a middle-out approach to ontology engineering:
central are the processes, where each process is dependent on the result of
the previous process (bottom-up semantic freedom). Each of these processes
have optional constraints imposed by depending artefacts or running
(Semantic Web) services (top-down-framing). Finally, the axiomatised
artefact is operationalised and fed into the actual knowledge structures.

5. Ontology Evolution 135

Figure 5-1. A middle-out approach to ontology engineering: central are the processes, where
each process is dependent on the result of the previous process (bottom-up semantic freedom).
Each of these processes have optional constraints imposed by depending artefacts or running
(Semantic Web) services (top-down-framing).

2.1.1 Natural language grounding and lexical disambiguation

All meaning (semantics) is for communication purposes about a universe
of discourse. It is represented independent of language but necessarily must
be entirely rooted and described in (natural) language. Linguistic
“grounding” of meaning is achieved through elicitation contexts, which can
be mappings from identifiers to source documents such as generalised
glosses, often in natural language (Jarrar, 2006; De Leenheer et al., 2007).
Natural language labels for concepts and relationships bring along their
inherent ambiguity and variability in interpretation (Bouaud et al., 1995),
therefore this process is inseparable from lexical disambiguation.

Data models, such as data or XML schemas, typically specify the
structure and integrity of data sets. Hence, building data schemas for an
enterprise usually depends on the specific needs and tasks that have to be
performed within this enterprise. Data engineering languages such as SQL
aim to maintain the integrity of data sets and only use a typical set of
language constructs to that aim (Spyns et al., 2002), e.g., foreign keys.

136 Chapter 5

The schema vocabulary is basically to be understood intuitively (via the
terms used) by the human database designer(s). The semantics of data
schemas often constitute an informal agreement between the developers and
an intended group of users of the data schema (Meersman, 1999), and finds
its way only in application programs that use the data schema instead of
manifesting itself as an agreement that is shared amongst the community.
When new functional requirements pop up, the schema is updated on the fly.
This schema update process is usually controlled by one designated
individual.

In (collaborative) ontology engineering, however, absolute meaning is
essential for all practical purposes, hence all elements in an ontology must
ultimately be the result of agreements among human agents such as
designers, domain experts, and users. In practice, correct and unambiguous
reference to concepts or entities in the schema vocabulary is a real problem;
often harder than agreeing about their properties, and obviously not solved
by assigning system-owned identifiers. At the start of the elicitation of an
ontology, its basic knowledge elements (such as concepts and relationships)
are extracted from various resources such as a text corpus or an existing
schema, or rashly formulated by human domain experts through, e.g.,
tagging. Many ontology approaches focus on the conceptual modelling task,
hence the distinction between lexical level (term for a concept) and
conceptual level (the concept itself) is often weak or ignored. In order to
represent concepts and relationships lexically, they usually are given a
uniquely identifying term (or label). However, the context of the resource the
ontology element was extracted from is not unimportant, as the meaning of a
concept behind a lexical term is influenced by this elicitation context. When
eliciting and unifying information from multiple sources, this can easily give
rise to misunderstandings and ambiguities. An analysis of multiple contexts
is therefore generally needed to disambiguate successfully (Bachimont et al.,
2002; De Leenheer and de Moor, 2005).

2.1.2 Application

For the application of an ontology, the interpretation of the knowledge
artefacts (which are referred to by terms) of the ontology is ambiguous if the
context of application, such as the purpose of the user, is not considered.
Different domain experts might want to “contextualise” elements of an
ontology individually for the purpose of their organisation, for example by
selection, specialisation or refinement, leading to multiple diverging
ontologies that are context-dependent on (read: contextualisations of) the
same (part of an) ontology.

5. Ontology Evolution 137

Divergence is the point where domain experts disagree or have a conflict
about the meaning of some knowledge element in such a way that
consequently their ontologies evolve in widely varying directions. Although
they share common goals for doing business, divergent knowledge positions
appear as a natural consequence when people collaborate in order to come to
a unique common understanding. Divergence arises because of differences
among individuals. Individuals’ experiences, personalities, and commitments
become the potential for conflicts. According to Putnam and Poole (1987), a
conflict is:

“the interaction of interdependent people who perceive opposition of
goals, aims, and values, and who see the other party as potentially
interfering with the realisation of these goals.”

This definition mainly underlines three characteristics of conflict:
interaction, interdependence, and incompatible goals. In our context, goals
should be understood as meaning. Incompatible meaning refers to the
divergent ontological elements caused by alternative perspectives. Diaz
(2005) refers to this as cognitive conflict.

Rather than considering this to be a problem, conflicts should be seen as
an opportunity to negotiate about the subtle differences in interpretation,
which will ultimately converge to a shared understanding disposed of any
subjectivity. However, meaning conflicts and ambiguities should only be
resolved when relevant. It is possible that people have alternative
conceptualisations in mind for business or knowledge they do not wish to
share. Therefore, in building the shared ontology, the individual ontologies
of the various partners only need to be aligned insofar necessary, in order to
avoid wasting valuable modelling time and effort. Furthermore, even if
considered relevant from the community point of view, the changes that are
caused by convergence or divergence are not always desired to be
propagated to dependent artefacts in a push-based way: some applications
might desire to decide on their own pace when to commit to the new version
(Maedche et al., 2003).

2.1.3 Axiomatisation

Domain constraints (e.g., database constraints), rules and procedures are
essential to achieve an understanding about a domain’s semantics but
agreement about them is very difficult and nearly always specific to a
context of application. An optimal ontological commitment constrains the
possible interpretations of an ontology so that they can be understandable
and usable (Gruber, 1993; Guarino, 1998). Furthermore, from an ontology

138 Chapter 5

application’s point of view, constraints describe permitted updates of data
stores that exist entirely within that application’s realm.

This suggests an approach were an ontology is composed of separate
inter-dependent layers, with on the lowest level the conceptualisation (i.e.,
lexical representation of concepts and their interrelationships), and continued
with a number of increasingly restricting axiomatisation (i.e., semantic
constraints) layers articulating different levels of ontological commitment.
The goal of this separation, referred to as the double articulation principle
(Spyns et al., 2002), is to enhance the potential for re-use and design
scalability. Reuse is only engendered by letting the application determine its
own level of commitment to the ontology, i.e., by only committing to that
layer that best approximates its intended meaning. The latter ought to be an
optimal trade-off between a general-purpose and application-specific
axiomatisation.

2.1.4 Operationalisation

Once (a version of) an ontology has been verified and validated (see
further Sect. 3.2.4), it can be translated into an operational language that is in
accordance with the application pool. For example, the most widely used
recommendations on the Semantic Web are XML, RDF(S) and OWL.
However, as community goals tend to shift depending on the changing
shared business interests, an operationalised ontology version will soon
become obsolete. An ontology should capture these changes continuously in
order to co-evolve driven by the ontology engineering activities described so
far.

2.2 Context dependencies

Context dependencies between artefacts play an important role for the
elicitation, application, and analysis of ontologies (e.g., Maedche et al.,
2003; Haase et al., 2004), but also for their correct interpretation (De
Leenheer and de Moor, 2005). The question is how to apply and integrate
them to increase the quality of such ontology engineering processes. For
example, in Fig. 5-2: the interpretation of the terms A, B, C, and F on the
right-hand side is dependent on their lexical grounding and disambiguation
on the left-hand side. The dependency is further formalised by a sequence of
operations defining relationships between the terms.

5. Ontology Evolution 139

Figure 5-2. An illustration of a context dependency: the interpretation of the terms A, B, C,
and F on the right-hand side is dependent on their lexical grounding and disambiguation on
the left-hand side. The dependency is further formalised by a sequence of operations defining
relationships between the terms.

Another particular example in the sense of conceptual graph theory
(Sowa, 1984) would be a specialisation dependency for which the
dependency constraint is equivalent to the conditions for contextual graph
specialisation (Sowa, 1984: pp. 97). A specialisation dependency
corresponds to a monotone specialisation. For instance, an organisational
definition of a particular task (the entity) can have a specialisation
dependency with a task template (its context). The constraint in this case is
that each organisational definition must be a specialisation of the template
(de Moor et al., 2006). Furthermore, ontologies naturally co-evolve with
their communities of use: whenever the template evolves, all context-
dependent specialisations should evolve along.

In (De Leenheer et al., 2007), we give a non-exhaustive analysis of
context dependency types and meaning conflicts between diverging
meanings as a natural consequence of interorganisational ontology
engineering. We illustrate these dependencies by formally describing and
decomposing the OE macro-processes in terms of a non-exhaustive set of
primitives such as change operators for selecting, linking, and changing
knowledge elements.

Tracing context dependencies by means of micro-process primitives,
provides a better understanding of the whereabouts of knowledge elements
in ontologies, and consequently makes negotiation and application less
vulnerable to meaning ambiguities and conflicts, hence more practical.
Instead of being frustrated by out-of-control change processes, proper
context dependency management support will allow human experts to focus
on the much more interesting meaning interpretation and negotiation
processes.

Particularly in collaborative applications where humans play an
important role in the interpretation and negotiation of meaning (de Moor,
2005), such frustrating misunderstanding and ambiguity can have adverse

140 Chapter 5

consequences for the cost-effectiveness and viability of ontologies as a
solution to bring the Semantic Web to its full potential.

3. SINGLE ONTOLOGY EVOLUTION

The key challenge of this chapter was to provide a unified framework and
process model for ontology evolution that describes and supports all high-
level activities related to evolving ontologies in a collaborative and
distributed setting. Before undertaking this challenge, however, let us first
focus on the more humble task of coming up with an evolution process for
ontologies developed and evolved by a single user. This single user ontology
evolution view seems to become generally accepted, since it has been
proposed in various forms by different authors. For example, Maedche et al.
(2003) have proposed a basic process model for evolving ontologies. We
first take a look at the work that has been done in data schema evolution.

3.1 Data schema evolution

Although the issues in schema evolution are not entirely the same as in
ontology evolution, the philosophy and results from schema evolution in
general1 have been fruitfully reconsidered for the treatment of the ontology
evolution problem. The resemblances and differences between ontologies
and data models are widely discussed in literature such as Meersman (2001),
Spyns et al. (2002), and Noy and Klein (2004). The basic argumentation
behind comparing ontologies and data schemas is that (i) formally, all such
kinds of formal artefacts are lexically represented by sets of predicates (data
models); and (ii) they describe some domain by means of conceptual entities
and relationships in a (not necessarily) shared formal language2 (Meersman,
2001).

Furthermore, the following rigorously cited definitions for schema
evolution and versioning by Roddick (1995), indicate the similar situation
we are confronted with in ontology evolution.

• Schema evolution is the ability to change a schema of a populated
database without loss of data, the latter which means providing access to
both old and new data through the new schema.

1 object-oriented (OO) database schemas, relational schemas, entity-relationship (ER)

schemas, fact-oriented schemas (NIAM (Verheijen and Van Bekkum, 1982), ORM
(Halpin, 2001), etc.) in particular

2 e.g., (De Troyer, 1993) presents a language that is able to represent ER, BRM, or relational
schemas

5. Ontology Evolution 141

• Schema versioning is the ability to access all the data (both old and new)

through user-definable version interfaces. A version is a reference that
labels a quiet point in the definition of a schema.

Similarly, in our survey we will consider versioning as a supportive activity
along the different phases of the evolution process.

Looking at ontology evolution merely from this “formal” point of view,
we can adopt methods and techniques from data schema evolution.
Significant examples include transformation rules (in terms of pre- and post-
conditions) to effect change operators on data schemas and change
propagation to the data (Banerjee et al., 1987), frameworks for managing
multiple versions of data schemas coherently (Kim and Chou, 1988;
Roddick, 1995) and models for different levels of granularity in change
operators, viz. compound change operators3 (Lerner, 2000). Furthermore,
changes in one part of a schema might trigger a cascade of changes in other
parts (Katz, 1990).

Main results in ontology evolution have been reported by Oliver et al.
(1999), Heflin (2001), Klein et al. (2002), Stojanovic et al. (2002), Maedche
et al. (2003), and Plessers (2006). They base their work predominantly in the
previous mentioned schema evolution techniques, next to addressing
particular needs for evolution of ontologies. Next, we will elaborate on this
work by positioning it in the appropriate activities within a generic process
model for single ontology evolution.

3.2 Single user change process model

All ontology engineering processes define a change process that involves
several activities. In this section, we propose a more sophisticated single user
change process model, based on the experience borrowed from the domain
of software and systems engineering, where the use of process models is
commonly accepted. Over the years, various process models have been
proposed, and dedicated tools to support these process models are in active
use today.

When it comes to evolution, there are various so-called “evolutionary
process models,” that explicitly consider software evolution as a crucial
activity.4 There are even dedicated models that detail the different
subactivities of the evolution process itself, and explain how they are related.
One such process model, that we will refer to as the change process model is

3 e.g., moving an attribute x from a class A to a class B, means (more than) successively

deleting x in A and adding x in B
4 Examples of such models are the so-called spiral model of software development (Boehm,

1988) and the staged model for software evolution (Bennett and Rajlich, 2000)

142 Chapter 5

depicted in Fig. 5-3. It is based on Bennett and Rajlich (2000) and essentially
distinguishes four activities over three phases (initiation, execution, and
evaluation) in the process of making a change: requesting a change,
planning the change, implementing the change, and verifying and validating
the change. It is an iterative process that needs to be applied for each
requested change. The process requires decisions on whether the requested
change is relevant, whether it is feasible to implement this change, and
whether the change has been implemented properly.

Figure 5-3. A context-independent change process model.

Interestingly, the activities of the proposed change model of Fig. 6-1 are
generic, in the sense that they are not typical to software systems, but can be
applied to any type of artefact that is subject to changes. As such, this
change process can be interpreted and reused in the context of ontology
evolution without any difficulty whatsoever. In the remainder of this section,
we will explore the different activities of the change process model in more
detail, seen from the single user ontology evolution point of view.

3.2.1 Requesting the change

Requesting the change has to do with initiating the change process. Some
stakeholder wants to make a change to the ontology under consideration for
some reason, and will post a so-called change request.

Change representation: Usually a change request is formalised by a

finite sequence of elementary change operators. The set of applicable
change operators to conduct these change operators is determined by the
applied KR model. In principle, this set should subsume every possible type
of ontology access and manipulation (completeness issue), and in particular,
the manipulation operators should only generate valid ontologies (soundness
issue) (Banerjee et al., 1987; Peters and Özsu, 1997). In practice, however,
ontology evolution frameworks only consider a non-exhaustive set of
operators, tuned to the particular needs of the domain.

5. Ontology Evolution 143

In the data schema and ontology evolution literature, much work focuses
on devising taxonomies of elementary change operators that are sound and
complete. Banerjee et al. (1987) chose the ORION object-oriented data
model, devised a complete and sound taxonomy of possible change
operators, and finally defined transformation rules (in terms of pre- and
post-conditions) in order to effect change operators on data schemas and
change propagation to the data. Lerner (2000) introduces models for
different levels of granularity in change operators, viz. non-elementary or
compound change operators.

Also in ontology evolution literature, it has become common practice to
derive a taxonomy of change operators in terms of a particularly chosen KR
model. E.g., Heflin (2001) takes the definition of Guarino (1998) as basis for
his model, while Klein et al. (2002) refer to the definition of Gruber (1993).
Heflin’s model is formal, but his definition of an ontology (being a logical
theory) is very much akin to the formal definition of a data schema as in De
Troyer (1993). On the other hand, Klein et al. are more pragmatical in a way
that they take Gruber’s definition quite literally, and infer that there are three
parts of the ontology (i.e., the model) to consider: the specification, the
shared conceptualisation and the domain, and infer different types of change
respectively. Klein and Fensel (2001) exemplify this.

Inspired by Lerner (2000), Stojanovic argues that change representation
in terms of elementary operators is not always appropriate, and hence she
defines a taxonomy of composite and complex change operators that are on a
more coarse level than atomic change operators. Composite change
operators are restricted to modify one level of neighbourhood of entities in
the ontology. Examples are, given a concept taxonomy: “pull concept up,”
“split concept,” etc. Complex change operators are combinations of at least
two elementary and one composite change operator.

Prioritisation: Multiple change requests may be pending, in which case

one of the requests needs to be selected. This requires setting up a
prioritisation scheme for mapping the change requests, in order to decide
which change should be implemented first. Prioritisation of requests can be
based on the role of the change requester; however this remains undefined
when assuming only one single administrator.

Change request types: Plessers (2006) distinguishes between changes

on request and changes in response. He mainly concentrates on the changes
on response that concern the process of changing an artefact as a
consequence of changes to a sub-ontology it is depending on. A change on
request is further divided by Stojanovic (2004) in top-down and bottom-up
change requests.

144 Chapter 5

Top-down change requests are explicit and are centrally driven by an
entitled knowledge engineer who wants to adapt the ontology to the new
requirements spawned by explicit user feedbacks. Bottom-up requests, on
the other hand are implicit, reflected in the behaviour of the system, and can
only be discovered through analysing this behaviour.

These types of change requests correspond to the two typical methods for
knowledge acquisition5. Top-down (deductive) changes are the result of
knowledge elicitation techniques that are used to acquire knowledge directly
from human domain experts. Bottom-up (inductive) changes correspond to
machine learning6

 techniques, which use different methods to infer patterns
from sets of examples.

Change discovery: Stojanovic (2004) states that based on heuristics

knowledge and/or data mining algorithms, suggestions for changes that
refine the ontology structure may be induced by the analysis of the following
data sources: (i) the ontology structure itself, (ii) the ontology instances or
(iii) the information describing patterns of ontology usage. This results in
three change discovery strategies. First, structure-driven changes are
discovered from the ontology structure itself. Second, data-driven changes
are induced from updates in the underlying instance sets and documents that
are annotated with the ontology. Different definitions can be found in
Stojanovic (2004) and Klein and Noy (2003). Finally, user-driven changes
are discovered from certain usage patterns emerged over a period of time.
Examples of such patterns include querying and browsing behaviour (Klein
and Noy, 2003).

3.2.2 Planning the change

Planning the change has to do with understanding why the change needs
to be made, where the change needs to be made (i.e., which parts of the
artefact under consideration need to be modified), and whether the change
should be made (i.e., do the benefits outweigh the risk, effort and cost
induced by making the change).

Impact analysis: A crucial activity in planning the change has to do with

change impact analysis, which is “the process of identifying the potential
consequences (side effects) of a change, and estimating what needs to be

5 Knowledge acquisition is a subfield of Artificial Intelligence (AI) concerned with eliciting

and representing knowledge of human experts so that it can later be used in some
application

6 Machine learning provides techniques for extracting knowledge (e.g., concepts and rules)
from data

5. Ontology Evolution 145

modified to accomplish a change” (Bohner and Arnold, 1996). This impact
analysis is very helpful to estimate the cost and effort required to implement
the requested change.

A result of this activity may be to decide to implement the change, to
defer the change request to a later time, or to ignore the change request
altogether (for example, because its estimated impact and effort may be too
high to afford).

Ontologies often reuse and extend (parts of) other ontologies. Many
different types of dependencies exist within and between ontological
artefacts of various levels of granularity, ranging from individual concepts of
definitions to full ontologies. Other dependent artefacts include instances, as
well as application programs committing to the ontology. Hence, a change
on request in one artefact might imply a cascade of changes in response to
all its dependent artefacts (Plessers, 2006). A viable tool should generate and
present the administrator with a complete list of all implications to the
ontology and its dependent artefacts.

Cost of evolution: Plessers (2006) determines the cost of evolution as a

key element in the decision whether to propagate change to a dependent
artefact or not. He does this by checking to which intermediate version7 the
ontology can update without any cost, i.e., without any need for change
propagation to the depending artefact. Simperl et al. (2007) propose a
parametric cost estimation model for ontologies by identifying relevant cost
drivers having a direct impact on the effort invested in ontology building.
Finally, Hepp (2007) gives an excellent overview about how realistic factors
constrain ontology benefits.

Also in the software engineering community, a lot of research has been
carried out in estimating the cost of software evolution (Sneed, 1995)
(Ramil, 2003). Whether and how these results can be adapted to ontology
engineering remains an open question.

3.2.3 Implementing the change

The activity of implementing the change seems to be self-explanatory,
although it is more complicated than it looks. The application of a change
request should have transactional properties, i.e., atomicity, consistency,
isolation, and durability (Gray, 1981). Our process model realises these

7 Plessers (2006: pp. 53) uses the term ‘intermediate version’ to refer to: “one of the versions

in the version log that together have lead to a publicly available version, but that never
has been published as a public version on its own. An intermediate version is rather a
version in-between towards a public version”.

146 Chapter 5

requirements by strictly separating the change request specification and
subsequent implementation, as suggested by Stojanovic (2004).

Implementing a change is a difficult process that necessitates many
different sub-activities: change propagation, restructuring and inconsistency
management.

Change propagation: During the change planning phase, the impact of

the change has been analysed, and it may turn out that a seemingly local
change will propagate to many different types of dependent artefacts. Based
on the cost and impact analysis, the administering knowledge engineer might
consider to cancel the change or not. Techniques for dealing with this
change propagation, such as the one proposed by Rajlich (1997), need to be
put in place.

In data schema evolution, the principal dependent artefacts are the
instances representing the database population. In order to keep the instances
meaningful, either the relevant instances must be coerced into the new
definition of the schema or a new version of the schema must be created
leaving the old version intact. In literature four main approaches have been
identified (Peters and Özsu, 1997), which can be reconsidered for updating
ontology instances as well: immediate conversion (or coercion) (Penney and
Stein, 1987; Skarra and Zdonik, 1986; Nguyen and Rieu, 1989; Lerner and
Habermann, 1990) and deferred conversion (lazy, screening) (Andany et al.,
1991; Ra and Rundensteiner, 1997) propagate changes to the instances only
at different times. Third, explicit deletion allows for (i) the explicit deletion
of all instances of all dependent component classes when the referencing
class is dropped; and (ii) explicit deletion of all instances when their class is
dropped (Banerjee et al., 1987). Four, filtering (Andany et al., 1991; Ra and
Rundensteiner, 1997) is a solution for versioning that attempts to maintain
the semantic differences between versions of schema. Other hybrid
approaches take a combination of the above four methods.

For propagating changes to dependent artefacts, Maedche et al. (2003)
propose two strategies: push-based and pull-based synchronisation. Push-
based synchronisation is a variant of immediate conversion. With pull-based
synchronisation, the changes are propagated at explicit request, which
implies a deferred approach.

Change logging: All information about the performed change operations

are usually tracked and recorded in a change log. This facilitates change
detection, merging and conflict management, as we will see further.

Restructuring: In some cases the requested change may turn out to be

too difficult to implement, given the current structure of the ontology. In that

5. Ontology Evolution 147

case, the ontology needs to be restructured first, before the actual desired
change can be implemented. According to Chikofsky and Cross (1990),
restructuring is “the transformation from one representation form to another
at the same relative abstraction level, while preserving the subject system’s
external behaviour (functionality and semantics).”

In conceptual schema modelling, a schema change can be formalised by a
transformation that either enriches, reduces or preserves the information
capacity (Miller, 1993). Information capacity is not a kind of quantitive
measure crediting the quality of a schema. It is explicated as a “semantic”
ordering between schemas. Hence, different notions of semantics and
semantic equivalence were defined, such as mathematical and conceptual
equivalence (Proper and Halpin, 1998). Proper and Halpin (1998) distinguish
roughly three reasons to apply transformation: (i) to select an alternative
conceptual schema which is regarded as a better representation of the
domain, (ii) to enrich the schema with derivable parts creating diverse
alternative views on the same conceptual schema as a part of the original
schema, (iii) to optimise a finished conceptual schema before mapping it to a
logical design. Schema equivalence in the relational model concerns
normalisation using lossless decomposition transformations (Codd, 1972).

Inconsistency management: Yet another problem is that the change

may introduce inconsistencies in the ontology. Nuseibeh et al. (2000) state
succinctly:

“An inconsistency is any situation in which a set of descriptions does not
obey some relationship that should hold between them. The relationship
between descriptions can be expressed as a consistency rule against
which the descriptions can be checked.”

According to Spanoudakis and Zisman (2001), an inconsistency
corresponds to

“a state in which two or more overlapping elements of different software
models make assertions about aspects of the system they describe which
are not jointly satisfiable.”

Obviously, this definition can be used for ontology models as well.
In research literature, we can discern two schools of thought. Proponents

of “consistency maintenance” try to keep the system under consideration
consistent at all costs. This is typically a conservative approach, where
certain changes are disallowed, as they would lead the system into an
inconsistent state. The second school of thought, that we will refer to as
“inconsistency management” is more liberal, since it relies on the hypothesis
that inconsistencies are inevitable, and that we need to live with them. Either

148 Chapter 5

way, we need to define and use formalisms and techniques for detecting and
resolving inconsistencies in ontologies, as well as mechanisms and processes
to manage and control these inconsistencies.

In data schema evolution, most work is situated in consistency
maintenance, where it is usually denoted as semantics of change. In ORION
(Banerjee et al., 1987), the semantics for each schema change is determined.
They first identify a set of invariant properties intrinsic to the object-oriented
model, ensuring semantic integrity. The invariants strictly depend on the
underlying model. Then for each schema change where there are
theoretically multiple alternative ways to preserve the invariant properties,
they define a set of transformation rules guiding the change process through
the most meaningful way that preserves the semantic integrity of the schema.
Similar approaches are found in Gemstone (Penney and Stein, 1987),
Farandole2 (Andany et al., 1991), and OTGen (Lerner and Habermann,
1990). In ontology evolution this work was adopted by Stojanovic (2004)
and De Leenheer et al. (2007).

A semantic approach was taken by Franconi et al. (2000). They adopt a
description logic framework for a simplified object-oriented model (ignoring
class behaviour), and extend it with versions. Each elementary schema
change between two versions specifies how the axiomatisation of the new
version will be in terms of the previous version, and refers to the evolution
of the objects through the change. The only elementary change operator that
can refer to a new object is “add class.” That is the reason that changing the
domain type of an attribute with a new domain type that is compatible with
the old one, leads to an inconsistent version. A legal instance of a schema
should satisfy the constraints imposed by the class definitions in the initial
schema version and by the schema changes between schema versions.
Franconi et al. also propose a reasoning mechanism for investigating
evolution consistency. Franconi’s approach is very similar to the declarative
approach taken by Stojanovic (2004). Finally, Jarrar et al. (2006) describe
algorithms for detecting unsatisfiability of ORM schemas. There, conflict
patterns for detecting conflict between semantic constraints on the same pair
of paths in the semantic network.

A sound and complete axiomatic model for dynamic schema evolution in
object-based systems is described in (Peters and Özsu, 1997). This is the first
effort in developing a formal basis for the schema evolution research which
provides a general approach to capture the behaviour of several different
systems, and hence is useful for their comparison in a unified framework.

In software engineering, there is a plethora of research on inconsistency
management. Spanoudakis and Zisman (2001) provide an excellent survey
of this research field. In the domain of ontology engineering, on the other
hand, research on inconsistencies is still in its infancy. Haase and Stojanovic

5. Ontology Evolution 149

(2005) present an approach to localise inconsistencies based on the notion of
a minimal inconsistent sub-ontology. Plessers and De Troyer (2006) use a
variant of description logics to detect and resolve certain kinds of
inconsistencies in OWL ontologies.

Evolution strategies: As already mentioned above, Banerjee et al.

(1987) provide for each change multiple alternative ways to preserve the
invariant properties. This idea was further adopted by Stojanovic et al.
(2002). They introduce resolution points where the evolution process or the
user has to determine one of a set of possible evolution strategies to follow.
In order to relieve the engineer of choosing evolution strategies individually,
four advanced evolution strategies are introduced. The choice of how a
change should be resolved can depend on characteristics of the resulting
ontology state (structure-driven); on characteristics of the change process
itself, such as complexity (process-driven); on the last recently applied
evolution strategy (frequency-driven); or on an explicitly given state of the
instances to be achieved (instance-driven). Mens et al. (2006) also provide
alternative strategies to resolve model inconsistencies. Furthermore, they
exploit the mechanism of critical pair analysis to analyse dependencies and
conflicts between inconsistencies and resolutions, to detect resolution cycles
and to analyse the completeness of resolutions.

3.2.4 Verification and validation

The last, but certainly not the least important, activity in the change
process has to do with verification and validation. Verification addresses the
question “did we build the system right?”, whereas validation addresses the
question “did we build the right system?” A wide scale of different
techniques has been proposed to address these questions, including: testing,
formal verification, debugging and quality assurance.

Formal verification relies on formalisms such as state machines and
temporal logics to derive useful properties of the system under study. Well-
known techniques for formal verification are model checking and theorem
proving (Clarke et al., 2000). While formal verification can be very useful, it
is a technique requiring considerable expertise, and it does not always scale
very well in practice. Therefore, other more pragmatic approaches are
needed as well.

Testing is one of these approaches. For a well-chosen representative
subset of the system under consideration, tests are written to verify whether
the system behaves as expected. Whenever one of the tests fails, further
actions are required.

150 Chapter 5

Debugging is the task of localising and repairing errors (that may have
been found during formal verification or testing). Some work on ontology
debugging is starting to emerge, see Parsia et al. (2005) and Wang et al.
(2005).

A final activity has to do with quality assurance. The goal is to ensure
that the developed system satisfies all desired qualities. This typically
concerns non-functional qualities, since the behaviour of the system has
already been verified during formal verification or testing. Examples of
useful quality characteristics may be: reusability, adaptability,
interoperability, and so on. Currently, efforts are being made for editing and
publishing a concise list of ontology quality guidelines in the context of the
Ontology Outreach Advisory8.

3.3 Versioning

In the case of ontology management, some of the activities in the process
model above suggest additional versioning support. Versioning is a
mechanism that allows users to keep track of all changes in a given system,
and to undo changes by rolling back to any previous version. Furthermore, it
can be used to keep track of the history of all changes made to the system.

The most common variant of versioning is known as state-based
versioning. At any given moment in time, the system under consideration is
in a certain state, and any change made to the system will cause the system
to go to a new state. Typically (but not always), this state is associated with a
unique version number. A more sophisticated variant of versioning is known
as change-based versioning. It treats changes as first-class entities, i.e., it
stores information about the precise changes that were performed. A
particular flavour of change-based versioning is operation-based versioning.
It models changes as explicit operations (or transformations). These
evolution operations can be arbitrarily complex, and typically correspond to
the commands issued in the environment used to perform the changes.

Explicit information about changes can be used to facilitate comparing
and merging parallel versions. Compared to state-based versioning, change-
based versioning is more flexible. For example, it makes it easier to compute
the difference between versions, or to implement a multiple undo/redo
mechanism. For undo, it suffices to perform the last applied operations in the
opposite direction, and for redo, we simply reapply the operations.

In the context of database systems, Katz (1990) and Roddick (1993,1995)
provide an excellent survey on schema versioning issues for CAD objects
and data schemas respectively. Schema versioning allows to view all data

8 http://www. ontology-advisory.org

5. Ontology Evolution 151

both retrospectively and prospectively, through user-definable version
interfaces. A version is a reference that labels a quiet point in the definition
of the schema, forced by the user:

1. prospective use is the use of a data source conforming to a previous
version of the schema, via a newer version of the schema — the new
schema must be backwards compatible;

2. retrospective use is the use of a data source conforming to a newer
version of the schema, via a previous version of the schema — the new
schema must be forwards compatible;

where use can be either viewing or manipulating. Schema evolution,
however, actually does not require this ability: essentially, change can be
propagated by means of coercion, screening or filtering (see Sect. 3.2.3).

Conradi and Westfechtel (1998) provided a similar, yet considerably
more extensive survey on the use of versioning in software engineering. This
also included so-called change-based version models, which were not treated
by Roddick (1995).

Klein et al. (2002) propose a system offering support for ontology
versioning. It is a state-based approach to versioning. In contrast, Maedche
et al. (2003) propose to use a change-based approach, which tracks and
records all information about the performed changes, thus facilitating change
detection, integration, and conflict management (see further).

3.3.1 Version differences

Noy and Musen (2002) propose PROMPTDiff, an algorithm to find
differences between two versions of a particular ontology. The algorithm
distinguishes between three kinds of mismatches of two versions of a frame:
(i) unchanged (nothing has changed in the definition), (ii) isomorphic (the
frames have slots, and facet values are images of each other but not
identical), and (iii) changed (the frames have slots or facet values that are not
images of each other). The algorithm is inspired by classical difference
algorithms, such as diff, that are used to discover changes or differences
between versions of a document (Hunt and McIllroy, 1976).

PROMPTDiff only detects differences between two versions based on
their structural difference. Therefore, Klein (2004) proposed several
complementary alternatives (change logs, conceptual relations and
transformation sets) that provide a richer semantic description of the changes
that the original ontology has undergone. Research on semantic differencing
in software engineering may also be relevant in this context (Jackson and
Ladd, 1994).

152 Chapter 5

3.3.2 Compatibility

Backward compatibility was first mentioned by Heflin (2001). Its goal is
to provide data accessibility between different versions of an ontology by
means of binary mappings between ontological elements of the respective
versions (Klein et al., 2002). We refer to Chapter 5, for an in-depth
elaboration on such mapping languages.

According to Plessers (2006), an ontology version is backward
compatible with a previous version for a given depending artifact if the
depending artifact remains consistent and a set of compatibility requirements
hold. Compatibility requirements allow maintainers of depending artifacts to
express which facts that could be inferred from the old version of an
ontology must still be inferable from the new version. All compatibility
requirements must be met for an ontology to be considered backward
compatible for that specific depending artifact. The compatibility
requirements are specified in terms of a Change Definition Language.

4. COLLABORATIVE ONTOLOGY ENGINEERING

The process model we presented above addresses the principal ontology
management activities from a single administrator point of view. We have
shown that for each of these activities a considerable amount of methods and
techniques are available. The key challenge of this chapter, however, was to
come up with a unified framework and process model for ontology evolution
and change management that scales up ontology engineering to a
collaborative and distributed setting.

As an illustrative example of the additional complexity introduced by the
distributed and collaborative nature of interorganisational ontology
engineering, consider the scenario depicted in Figure 5-4. It describes the
situation of two different organisations, each having their own particular
organisational ontology (OO1 and OO2, respectively). Assume that these
organisations have the same domain of interest, and they wish to share their
common knowledge by agreeing upon a shared interorganisational ontology
IOO. Evolution problems start to arise since these three ontologies OO1, OO2
and IOO have to be maintained and kept synchronised while they can all be
subject to changes. For example, Figure 5-4 shows what happens if version 1
of OO1 is revised into a new version. This requires integrating, if necessary,
these changes into a new version of IOO as well. As a result of updating the
IOO, the changes will need to be propagated to OO2 in order to keep it
synchronised. The situation becomes even more complex if OO1 and OO2
are subject to parallel independent changes (indicated by the parallel

5. Ontology Evolution 153

revisions of OO1 and OO2 to version 3 in Figure 5-4). As before, these
parallel changes need to be integrated into the IOO, but since these changes
come from different sources, it is likely that conflicts arise, and that a
negotiation process is required to decide how to merge all changes into a
new version of the IOO.

Figure 5-4. An example of interorganisational ontologies.

In this section, we will explore the above problem in detail, and discuss
which additional mechanisms and activities are required to provide a
solution.

4.1 Collaborative change process model

Collaboration aims at the accomplishment of shared objectives and an
extensive coordination of activities (Sanderson, 1994). Successful virtual
communities and communities of stakeholders are usually self-organising.
The knowledge creation and sharing process is driven by implicit
community goals such as mutual concerns and interests (Nonaka and
Takeuchi, 1995). Hence, in order to better capture relevant knowledge in a
community-goal-driven way, these community goals must be externalised
appropriately. They may then be linked to relevant strategies underlying the
collaborative ontology engineering process and its support.

In a collaborative setting, we replace the single knowledge engineer by
multiple knowledge workers, the latter being community members that have
expertise about the domain in particular, rather than in knowledge
engineering in general. Furthermore, we leverage the single user change
process model to a community-goal-driven change process model, by
embedding it in its real and “complex” environment or context (Figure 5-5),
characterised as a system consisting of following two parts:

1. A formal system part, being the Ontology Server storing actual shared
networked structures of inter-dependent knowledge artefacts. In the
single user change process model, we only considered this part and
further assumed a context-independent environment.

154 Chapter 5

2. A social system part, encompassing the community or organisation

governing the shared knowledge. Ultimately, this requires us to model
communities completely (i.e., establish their formal semantics) in terms
of their intrinsic aspects such as goals, actors, roles, strategies,
workflows, norms, and behaviour, and to so integrate the concept of
community as first-class citizen in the knowledge structures of the
evolving system.

Figure 5-5. A community-goal-driven change process model, embedded in its real
environment.

This holistic approach is breaking with current practice, where evolution
processes are usually reduced to only the non-human parts, with the possible
exception of the field of organisational semiotics and the language/action
perspective (e.g., RENESYS (de Moor and Weigand, 2007)) that already
involved a few socio-technical aspects of communities such as norms and
behaviour (e.g., MEASUR (Stamper, 1992)) in legitimate user-driven
information system specification.

These rapidly evolving community aspects, and the many dependencies
they have with the actual knowledge artefacts in the knowledge structures,
lead to knowledge structures that can be extremely volatile. Hence, research
into a special-purpose, disciplined and comprehensive framework and
methodology will be needed to address the manageable evolution of
knowledge structures, taking into account crucial issues such as conflict and

5. Ontology Evolution 155

dependency management, and ontology integration, while respecting the
autonomous yet self-organising drives inherent in the community.

Next, we give an overview of socio-technical aspects that currently
bootstrap practice in context-driven ontology engineering.

4.2 Socio-technical requirements

When formulating a change request in a collaborative context, at least the
following questions need to be considered:

1. What ontology engineering processes are required in order to achieve
the goal or resolve the communication breakdown? We already touched
upon this in Section 2. As multiple knowledge workers will collaborate,
we will need additional methods for integrating their divergent
conceptualisations, including negotiation and argumentation.

2. How to conduct the activities? This relates to the epistemological
dimension of knowledge: it examines to which extent subjective tacit
knowledge from multiple knowledge workers can be made explicit, and
universally acceptable (read: objective) for the community. This
ultimately requires alternative epistemological approaches to ontology
elicitation.

3. Who will be coordinating these activities? As already mentioned, shared
objectives can only be achieved through extended coordination. E.g.,
through implicit and explicit norms, the authority for the control of the
process is legitimately distributed among many different participants,
independent of their geographical location. This requires specification
methods for legitimate action.

4.2.1 Epistemological approaches

Knowledge Explication: During the ontology engineering process, the
subjective knowledge held by the individual domain experts is amplified,
internalised, and externalised as part of a shared ontology (Nonaka and
Takeuchi, 1995). Knowledge moves in an upward spiral starting at the
individual level, moving up to the organisational level, and finally up to the
interorganisational level. This requires an alternative approach to ontology
engineering.

The radical constructivist approach: Constructivism rejects the

existence of a unique objective reality, hence its reflecting “transcendent”
conceptualisation. Analogously, in a collaborative setting, however,
organisation members, including middle managers, users, and domain

156 Chapter 5

experts play an important role in the interpretation and analysis of meaning
during the different knowledge elicitation and application activities.
Furthermore, it might be the case that multiple members turn out to be
relevant to participate in one contextualised change process when it is related
to a topic for which they all share the necessary expertise. Hence, given the
diversity and the dynamics of knowledge domains that need to be
accommodated, a viable ontology engineering methodology should not be
based on a single, monolithic domain ontology that presumes a unique
objective reality that is maintained by a single knowledge engineer. It should
instead take a constructivist approach where it supports multiple domain
experts in the gradual and continuous externalisation of their subjective
realities contingent on relevant formal community aspects (De Leenheer et
al., 2007).

No free lunch: divergence meets convergence: The constructivist

approach engenders meaning divergence in the respective organisational
contexts. This requires a complex socio-technical meaning argumentation
and negotiation process, where the meaning is aligned, or converged. Figure
5-6 shows the effect of the constructivist approach on ontology engineering
processes: an explosion of increasingly mature versions of contextualised
ontological artefacts (conceptualising their divergent subject realities), and
of their inter-dependencies.

This confronts us with a seemingly unscalable alignment task. However,
sometimes it is not necessary (or even possible) to achieve context-
independent ontological knowledge, as most ontologies used in practice
assume a certain professional, social, and cultural perspective of some
community (Diaz, 2005). The key is to reach the appropriate amount of
consensus on relevant conceptual definitions through effective meaning
negotiation in an efficient manner. This requires powerful strategies for
selected integration, supported by argumentation and negotiation
methodologies, while allowing for management of context dependencies.

4.2.2 Modelling communities: coordination and negotiation

By grounding evolution processes in terms of community aspects such as
composition norms and conversation modes for specification, the
knowledge-intensive system can be precisely tailored to the actual needs of
the community (de Moor, 2002).

5. Ontology Evolution 157

Figure 5-6. The middle-out approach applied when multiple knowledge workers are engaged
in the change request. This requires additional support for integration, including
argumantation and negotiation.

Conversation: The RENISYS method conceptualises community
information system specification processes as conversations for specification
by relevant community members. It therefore uses formal composition
norms to select the relevant community members who are to be involved in a
particular conversation for specification. Next, it adopts a formal model of
conversations for specification to determine the acceptable conversational
moves that the selected members can make, as well as the status of their
responsibilities and accomplishments at each point in time.

Composition norms: Among other community aspects that will

orchestrate the collaborative ontology engineering processes, in this paper
we only distinguish between two kinds of composition norms: (i) external
norms that authorise relevant actors in the community for an action within a
particular ontological context, and (ii) internal norms that, independently
from the involved actors, constrain or propagate the evolution steps,

158 Chapter 5

enforced by the dependencies the involved ontological context has with
other contexts in the knowledge structures.

Inspired by Stamper and de Moor, an external norm is defined as follows:

if precondition then actor is {permitted/required/obliged} to
{initiate/execute/evaluate} action in ontological context

The precondition can be a boolean, based on a green light given by an
entitled decision organ, or triggered by some pattern that detects a trend or
inconsistency in the actual ontological structures. The deontic status states
whether an actor is permitted, obliged, or required to perform a particular
role (initiation, execution, validation) within the scope of a certain action
(e.g., a micro-level OE process or macro-level OE activity).

An internal norm is defined as follows:

{initiate/execute/evaluate} action in ontological_context is constrained
to ∪i primitivei(e

1
i,…,en

i) where ∀i {ej
i,…,ek

i} ∈ ontological_contexti (1
≤ j ≤ k ≤ n)

Performing a particular action role in some ontological context is (in
order to perform that action) constrained to use a restricted toolbox of
primitives (∪i primitivei), of which some parameters are bound to
ontological elements ej

i,…,ek
i, that were already grounded in some

ontological contexts.

4.3 Context dependency management

We now present a generic model for understanding the inter-
organisational ontology engineering process, which collects the
epistemological and legitimate assumptions we made above. It is an
extension of the one inspired by de Moor et al. (2006) and Templich et al.
(2005). The main focus lies on how to capture relevant commonalities and
differences in meaning by supporting domain experts in an efficient way by
assigning them scalable knowledge elicitation tasks driven by incentives
such as templates that represent the current insights. Differences are aligned
insofar necessary through meaning argumentation and negotiation.

In the model, we make the following assumptions:

1. An interorganisational ontology needs to be modelled not by external
knowledge engineers, but constructively by domain experts themselves.
Only they have the tacit knowledge about the domain and can sufficiently
assess the real impact of the conceptualisations and derived collaborative
services on their organisation.

5. Ontology Evolution 159

2. An interorganisational ontology cannot be produced in one session, but

needs to evolve over time. Due to its continuously changing needs,
expectations, and opportunities, different versions are needed.

3. The common interest only partially overlaps with the individual
organisational interests. This means that the goal is not to produce a
single common ontology, but to support organisations in interpreting
common conceptualisations in their own terms, and feeding back these
results. This requires continuous support for so-called co-evolution of
ontologies. A continuous alignment of common and organisational
ontologies is therefore required.

4. The starting point for each version should be the current insight about the
common interest, i.e., common conceptual definitions relevant for the
collaborative services for which the interorganisational ontology is going
to be used.

5. The end result of each version should be a careful balance of this
proposal for a common ontology with the various individual
interpretations represented in the organisational ontologies.

Figure 5-7. A model inter-organisational ontology engineering, inspired by de Moor et al.
(2006).

The inter-organisational ontology (IOO) model in Figure 5-7 and its
assumptions suggests many different types of context dependencies, within
and between ontological elements of various levels of granularity, ranging
from individual concepts of definitions to full ontologies.

Inter-organisational dependencies: The engineering process starts with
the creation (or adoptation) of an (existing) upper common ontology (UCO),
which contains the conceptualisations and semantic constraints that are

160 Chapter 5

common to and accepted by a domain. For example, a domain glossary or
thesaurus could frame all future OE activities in a top-down fashion. Each
participating organisation contextualises (through e.g., specialisation) this
ontology into its own Organisational Ontology (OO), thus resulting in a local
interpretation of the commonly accepted knowledge. In the Lower Common
Ontology (LCO), a new proposal for the next version of the IOO is
produced, selecting and merging relevant material from the UCO and
various OOs. The part of the LCO that is accepted by the community then
forms the legitimate UCO for the next version of the IOO (dashed arrows,
engendering the upward spiral). The performed context-driven ontology
engineering processes characterise different dependency types between the
sub-ontologies (full arrows).

Intra-organisational dependencies: For each new concept or
relationship within an organisational ontology, different OE activities are
conducted accordingly. E.g., first a natural language label is chosen to refer
to the concept, next it is disambiguated and hooked into the upper common
type hierarchy, then it is applied in terms of relationships with other concepts
(differentiae), and finally axioms constrain the possible interpretations of the
genera and differentiae. Again, this results in many dependencies within the
individual organisational ontologies that are characterised by ontology
engineering processes.

The formal characterisation of context dependency types in terms of
applicable change operators depends on the adopted KR model, hence is
omitted here. For a technical elaboration of this in the DOGMA KR model,
we refer to (De Leenheer et al., 2007: pp. 40). For an elaborated example of
context dependency management in a real-world business case, we refer the
reader to Chapter 10.

4.4 Argumentation and negotiation

A negotiation process is defined as a specification conversation about a
concept (e.g., a process model) between selected domain experts from the
stakeholding organisations. For an excellent survey on different conversation
models we refer to de Moor (2002).

In order to substantiate their perspectives, domain experts must formulate
arguments. The most accepted argumentation model is IBIS (Kunz, 1970),
which provides a simple and abstract infrastructure for so-called wicked
problems. Wicked problems are usually not solvable in a fashionable way as
there are many social obstacles such as time, money, and people.

By considering ontology negotiation as a wicked problem, Tempich et al.
(2005), propose DILIGENT, which is an integrated formal argumentation
model (based on IBIS) to support ontology alignment negotiations. This

5. Ontology Evolution 161

ontology supports the process in several ways. In negotiations, it focuses the
participants and helps to structure their arguments. In the usage and analysis
phases, the exchanged arguments can be consulted to better understand the
current version of the model. Moreover, it allows for inconsistency detection
in argumentations. Since the ontology covers all aspects of the negotiation
activity, namely issue raising, formalisation of the issues, and ultimately
decision making, the participants are always informed about the current
status of the negotiation and the ontology they are building.

Another ontology engineering methodology that provides similar
argumentation support is HCOME (Kotis et al., 2004). However, they
emphasise on the distributed and human-centered character of ontology
engineering and user interfaces.

4.5 Integration

An important activity in context-driven OE concerns ontology
integration. This process has been studied extensively in the literature. For a
state-of-the-art survey, see Euzenat et al. (2004), and Kalfoglou and
Schorlemmer (2005). Although different groups vary in their exact
definition, ontology integration is considered to consist of four key
subactivities (adopting the terminology from Kalfoglou and Schorlemmer
(2005)):

1. Mapping and
2. Alignment: Given a collection of multiple contextualisations, these

often need to be put in context of each other, by means of mapping or
aligning (overlapping) knowledge elements pairwise.

3. Schema articulation: A collection of individual knowledge elements
may need to be contextualised, by means of a consensual articulation
schema of these (overlapping) elements.

4. Merging: A collection of individual knowledge elements may need to
be contextualised by means of a consensual merging of these
(overlapping) elements9. Because merging is an essential activity, we
will discuss it in detail here. For mapping and alignment we refer to
Chapter 6.

Merging is the activity of integrating changes that have been made in

parallel to the same or related artefacts, in order to come to a new consistent
system that accommodates these parallel changes. Merging is typically

9 An ontology merging process requires an established articulation schema, which is the result

of a successful articulation process. However, in this chapter we do not work out such
relations between contextualisations.

162 Chapter 5

needed in a collaborative setting, where different persons can make changes
simultaneously, often without even being aware of each other’s changes. An
excellent survey of a wide variety of different techniques to software
merging that have been proposed and used in software engineering can be
found in Mens (2002).

The kind of support that is required depends on the particular architecture
that is provided. In a centralised architecture, each user possesses its own
personal working copy that needs to be synchronised from time to time with
a central repository. In other words, one ontology is considered to be the
central one, and changes are always made to this central ontology and
propagated to its depending ontologies. This approach to ontology change
management has already gained considerable attention in the research
community (Klein et al., 2002; Stojanovic, 2004).
In a distributed architecture, such as the World Wide Web, it is unrealistic to
assume that there is a central ontology. Instead, each ontology can be subject
to changes, which need to be propagated to all depending ontologies. This
problem becomes even more complex since such changes to ontologies may
be made in parallel, in which case the need arise to merge these changes.
Maedche et al. (2003) propose a framework for managing evolution of
multiple distributed ontologies. This decentralised view is also the main
focus of this chapter.

Contemporary tools that support merging can be classified according to
whether they support two-way or three-way merging. Two-way merging
attempts to merge two versions of a system without relying on the common
ancestor from which both versions originated. With three-way merging, the
information in the common ancestor is also used during the integration
process. This makes three-way merging more powerful than its two-way
variant, in the sense that more conflicts can be detected.

Yet another distinction can be made between state-based and change-
based merging. With state-based merging, only the information in the
original version and/or its revisions is considered during the merge. In
contrast, change-based merging additionally uses information about how the
changes were performed. Compared to state-based merging, change-based
merge approaches can improve detection of merge conflicts, and allow for
better support to resolve these conflicts (Feather, 1989; Lippe and van
Oosterom, 1992). The underlying idea is that we do not need to compare the
parallel revisions entirely; it suffices to compare only the changes that have
been applied to obtain each of the revisions (Edwards, 1997; Munson and
Dewan, 1994).

5. Ontology Evolution 163

5. CHALLENGES

The key challenge of this chapter was to construct a single framework,
based on these mechanisms, which can be tailored for the needs of a
particular version environment. Therefore, we performed a comprehensive
survey on all ontology evolution activities involved in both single user and
collaborative ontology engineering. During our research, however, we have
learned and shown that concerning the collaborative aspects, still much can
be learned from other domains. This conclusion restrains us from claiming
that we would have reached our goals. However, the results of our study did
allow us to send a valuable message to the data and knowledge engineering
community. Next, we reflect on some future challenges.

5.1 Conflict management

Meaning divergences are inevitable, and the technique of merging can be
used to address and resolve their resulting conflicts. Based on the surveys of
Conradi and Westfechtel (1998) and Mens (2002), it turns out that the
change-based variant of merging is the most powerful. In combination with
the idea of operation-based versioning, each revision between two
consecutive versions is represented as a sequence of primitive change
operations. Merge conflicts can thus be detected by pairwise comparison of
these primitive operations that appear as part of the change sequences that
need to be merged. Resolution of the conflicts can be achieved by modifying
one or both change sequences (e.g., by adding or removing operations in the
sequence) in such a way that the merge conflict no longer occurs.

As it turns out, the theory of graph transformation (Ehrig et al. 1999)
provides a generic formalism to reason about such merge conflicts.
Westfechtel (1991) was arguably the first to explore these ideas to support
merging of “software documents,” whose syntax could be expressed using a
formal, tree-structured, language. In his dissertation, Tom Mens (1999,
1999b) built further on these ideas to propose graph transformation as a
domain-independent formalism for software merging. In this formalism, the
notion of merge conflict corresponds to the formal notion of parallel
dependence, and the mechanism of critical pair analysis can be used to detect
merge conflicts.

Given that the use of change-based versioning has already been
suggested by Maedche et al. (2003) in the context of ontologies, and given
that it is relatively straightforward to represent ontologies formally as a
graph, the idea of graph transformation can also be applied to support
evolution and merging of ontologies in a formal way. Some initial
experiments that we have carried out in this direction indicate that this is

164 Chapter 5

indeed feasible. The idea is that the ontological metaschema (defining the
syntax of a well-formed ontology) is expressed as a so-called type graph,
and that the change operations can be expressed formally as a (sequence of)
graph transformation rules. A formal (yet automated) dependency analysis
then allows us to identify and explore potential conflicts between these
change operations. For more details on how this process works, we refer to
(Mens et al., 2007), that details the approach in the context of software
evolution.

Mens et al. (2006) performed a formal and static analysis of mutual
exclusion relationships and causal dependencies between different
alternative resolutions for model inconsistencies that can be expressed in a
graph-based way. This analysis can be exploited to further improve the
conflict resolution process, for example by detecting possible cycles in the
resolution process, by proposing a preferred order in which to apply certain
resolution rules, and so on.

5.2 Towards community-driven ontology evolution

Research in ontology engineering has reached a certain level of maturity,
considering the vast number of contemporary methods and tools for
formalising and applying knowledge representation models found in main-
stream research. Several EU FP6 integrated projects10 and networks of
excellence11 tested and validated these technologies in a wide variety of
applications such as Semantic Web Services. However, there is still little
understanding of, and technological support for, the methodological and
evolutionary aspects of ontologies as resources. Yet these are crucial in
distributed and collaborative settings such as the Semantic Web, where
ontologies and their communities of use naturally and mutually co-evolve.
For managing the evolution of domain vocabularies and axioms by one
single dedicated user (or a small group under common authority), established
techniques from data schema evolution have been successfully adopted, and
consensus on a generic ontology evolution process model has begun to
emerge. Much less explored, however, is the problem of operational
evolution of inter-organisational or community-shared, yet autonomously
maintained ontologies.

There are many additional complexities that should be considered. As
investigated in FP6 integrated projects on collaborative networked
organisations12, the different professional, social, and cultural backgrounds
among communities and organisations can lead to misconceptions, leading

10 e.g., http://www.sekt-project.com, http://dip.semanticweb.org
11 e.g., http://knowledgeweb.semanticweb.org
12 e.g., http://ecolead.vtt.fi/

5. Ontology Evolution 165

to frustrating and costly ambiguities and misunderstandings if not aligned
properly. This is especially the case in inter-organisational settings, where
there may be many pre-existing organisational sub-ontologies, inflexible
data schemas interfacing to legacy data, and ill-defined, rapidly evolving
collaborative requirements. Furthermore, participating stakeholders usually
have strong individual interests, inherent business rules, and entrenched
work practices. These may be tacit, or externalised in workflows that are
strongly interdependent, hence further complicate the conceptual alignment.
Finally, one should not merely focus on the practice of creating ontologies in
a project-like context, but view it as a continuous process that is integrated in
the operational processes of the community. The shared background of
communication partners is continuously negotiated as are the characteristics
or values of the concepts that are agreed upon.

Modelling of communities: Successful virtual communities and
communities of stakeholders are usually self-organising. The knowledge
creation and sharing process is driven by implicit community goals such as
mutual concerns and interests. Hence, in order to better capture relevant
knowledge in a community-goal-driven way, these community goals must be
externalised appropriately. They may then be linked to relevant strategies
underlying the collaborative ontology engineering process and its support.
This requires us to model communities completely (i.e., establish their
formal semantics) in terms of their intrinsic aspects such as goals, actors,
roles, strategies, workflows, norms, and behaviour, and to so integrate the
concept of community as first-class citizen in the knowledge structures of
the evolving system. This holistic approach is breaking with current practice,
where systems are usually reduced to only the non-human parts, with the
possible exception of the field of organisational semiotics that already
involved a few socio-technical aspects of communities such as norms and
behaviour in information system specification.

These rapidly evolving community aspects, and the many dependencies
they have with the actual knowledge artefacts in the knowledge structures,
lead to knowledge structures that can be extremely volatile. Hence, research
into a special-purpose, disciplined and comprehensive framework will be
needed to address the manageable evolution of knowledge structures, taking
into account crucial issues such as versioning, dependency management,
consistency maintenance, impact analysis, change propagation, trend
detection and traceability while respecting the autonomous yet self-
organising drives inherent in the community.

Knowledge divergence: Given the diversity of knowledge domains that
need to be accommodated, a viable ontology engineering methodology
should not be based on a single, monolithic domain ontology maintained by
a single knowledge engineer, but should instead support multiple domain

166 Chapter 5

experts in the gradual and continuous building and managing of increasingly
mature versions of ontological artefacts, and of their diverging and
converging interrelationships. Contexts are necessary to formalise and
reason about the structure, interdependencies, and evolution of these
ontologies, thus keeping their complexity manageable. As already
mentioned, the socio-technical aspects of the ontology engineering process
in complex and dynamic realistic settings are still poorly understood, and
introduce new problems in ontology evolution that where so far not
described and studied in an integrated fashion. A conceptualisation and
unification of the socio-technical aspects of the involved communities, such
as the community goals, should drive the continuous evolution (divergence
and convergence) of knowledge structures.

Community-grounded negotiation: For defining valuable knowledge
structures, a complex socio-technical process of ontology alignment and
meaning negotiation is required. Furthermore, sometimes it is not necessary
(or even possible) to achieve context-independent ontological knowledge, as
most ontologies used in practice assume a certain professional, social, and
cultural perspective of some community.

It is especially interesting to contrast the meaning negotiations with
ontology-based business negotiations. Such negotiations enable the
negotiators to set an agenda that can be dynamically adapted and to define
and clarify terms that are used and concepts of a negotiation ontology used
in the negotiation messages and the resulting business contract. Meaning is
thus also defined but has a more economically-oriented character.

Human-computer confluence: In general, dynamic communities require
tools and systems for interaction and exchange. On the one hand, computer-
supported cooperative work (CSCW) aims at supporting groups in their
cooperation and collaboration. On the other hand, the ontology engineering
within communities requires a different type of system support. Both types
need to be integrated into a holistic knowledge-intensive system, of which
humans are part, to be both useful for and useable by such dynamic
communities.

Humans play an important role in the interpretation and analysis of
meaning during the elicitation and application of knowledge. Consider for
example the crucial process of externalising subjective tacit knowledge into
formal knowledge artefacts, or the iterative incremental process of
inconsistency resolution through negotiation. Instead of being frustrated by
out-of-control evolution processes, adequate management support for co-
evolving (inter-dependent) knowledge structures with their communities of
use will allow human experts to focus on these much more interesting
“community-grounded” processes of realising the appropriate amount of

5. Ontology Evolution 167

consensus on relevant conceptual definitions through effective meaning
negotiation in an efficient manner.

Clearly, many of these processes are intrinsically interactive in nature
and require a lot of human intervention. This does not mean, however, that
we should rule out other approaches that are fully automated. A careful
balance and communication is needed between human, semi-automatic (i.e.
requiring human interaction) and automatic approaches for knowledge
interpretation and analysis processes. Ultimately, communities will consist
of a mix of human and software agents that transparently will communicate
and request services from each other in order to maintain the shared
knowledge structures appropriately.

Impact analysis: Moving this process and its associated knowledge
forward into real-time co-evolving, in order to respond to the continuously
shifting collaboration requirements, is an additional hard problem. This
requires us to be able to analyse the impact the changes will have on the
actual situation governed by inherent business rules and entrenched work
practices.

6. SOFTWARE AND TOOLS

Although a plethora of ontology engineering tools are available, most of
them still lack full support for all activities in the single user ontology
evolution process model from Sect 2.2. In this section we give a short
overview of state-of-the-art ontology evolution tools. For these tools, we
also explore their support for collaborative development.

6.1 Protégé tool suite

Protégé is a free, open source ontology editor and knowledge-base
framework. It supports two main ways of modelling ontologies via the
Protégé-Frames (based on OKBC (Chaudhri et al., 1998)) and Protégé-OWL
editors. Furthermore, Protégé ontologies can be exported into a variety of
formats including RDF(S), OWL, and XML Schema. The implementation is
based on Java, and provides a plug-and-play environment that makes it a
flexible base for rapid prototyping and application development. Plessers
(2006) provides plug-ins supporting versioning, change detection and
inconsistency checking. Diaz (2005) developed a plugin that supports
evolution activities in a collaborative setting.

168 Chapter 5

6.2 KAON

The KAON13 tool suite is a workbench integrating different tools for
different ontology engineering activities. It uses the Ontology Instance KR
model, or OI-model. The evolution facilities in KAON are basically the
implementation of the work proposed in (Stojanovic, 2004) and (Maedche et
al., 2003), including following features:

• Change representation, including complex and compound change
operators.

• Configurable evolution strategies: Users are allowed to set up
preferences for ontology evolution strategies. When the user requests a
change, the tool presents details to the user for approval. The change
request could generate a cascade of changes based on the defined
evolution strategies in order to maintain the consistency of the ontology.
The KAON API also computes sequences of additional changes when it
is necessary to maintain the consistency of an ontology after performing
a modification. It also provides the necessary interfaces to provide
access to this functionality from external applications (Gabel et al.,
2004).

• Dependent ontology evolution is intended to support distributed
ontology engineering, where ontology reuse through extension is
motivated, which results in many dependencies that lead to significant
changes to all dependent artefacts.

Currently, KAON does not support versioning identification and storage.

It also does not provide facilities to assure backward compatibility.

6.3 WSMO Studio

WSMO Studio is Semantic Web Service modelling environment for the
Web Service Modeling Ontology (Roman et al., 2005). It includes the
Ontology Management Suite14 which supports the management of Web
Services Modeling Language (WSML) ontologies (de Bruijn et al., 2006).
The featured single user WSML ontology versioning tool (De Leenheer et
al., 2006) has the following features:

• Ontology versioning API: This API allows the user to start a new
version of an ontology, to go back to the previous version, and to
commit (finalise) a version. Further, the user of this API has full control

13 http://kaon.semanticweb.org/
14 http://www.omwg.org/tools/dip/oms/

5. Ontology Evolution 169

over the version identifier of a committed version. Versions are
persistently stored in triple stores15, the latter for which the interface is
facilitated through the ORDI (Kiryakov et al., 2002) repository
middleware.

• Formulating change requests: In order to enable Semantic Web
Services in performing their goals, requests for defining new semantics
can be published. This is supported by an on-line auditing and reporting
tool.

• Version identification and metadata: The API contains interfaces and
classes for versioned WSMO API identifiers, and for version metadata
containing version comment, date of creation, etc.

• Version change log functionality: During the creation of a new
version, the significant changes are logged and when a version is
committed, this change log is available to the application.

• Partial version mapping: From the change log a partial mapping is
generated for mediation between the old and the new version. This
partial mapping is an input to a human designer who can complete it as
appropriate.

• Alternative evolution strategies: A wizard guides the user through
resolving the impact of changes like concept removal, whose instances
and subconcepts can be handled in different ways depending on the
intent of the change.

6.4 DOGMA Studio

DOGMA16 Studio is the tool suite behind the DOGMA ontology
engineering approach (Spyns et al., 2002, De Leenheer et al., 2007). It
contains both a Workbench and a Server. The Workbench is constructed
according to the plug-in architecture in Eclipse. There, plug-ins, being
loosely coupled ontology viewing, querying or editing modules support the
different ontology engineering activities and new plug-ins continuously
emerge. This loose coupling allows any arbitrary knowledge engineering
community to support its own ontology engineering method in DOGMA
Studio by combining these plug-ins arbitrarily. Such a meaningful
combination of view/edit/query plug-ins is called a “perspective” in Eclipse.
The DOGMA Server is an advanced J2EE application running in a JBoss
server which efficiently stores Lexons and Commitments in a PostgreSQL
Database. DOGMA Studio is complemented by a community layer in which
the DOGMA collaborative ontology engineering processes are grounded in

15 triple stores are databases for (meta-)data that are expressed in triples characterised by three

elements, viz. object, property, subject
16 http://starlab.vub.ac.be/website/dogmastudio

170 Chapter 5

communities of use. This layer is implemented by the DOGMA-MESS17
methodology and system. For an in-depth elaboration on DOGMA studio
and -MESS in the context of a business use case, we refer to Chapter 12.

ADDITIONAL READING

Model driven architecture and ontology development: Defining a
formal domain ontology is generally considered a useful, not to say
necessary step in almost every software project. This is because software
deals with ideas rather than with self-evident physical artefacts. However,
this development step is hardly ever done, as ontologies rely on well-defined
and semantically powerful AI concepts such as description logics or rule-
based systems, and most software engineers are largely unfamiliar with
these. Gaševic et al. (2006) tries to fill this gap by covering the subject of
MDA application for ontology development on the Semantic Web.

Software evolution: As repeatedly mentioned in this chapter, ontology
evolution has many relationships and overlaps with software evolution
research. Madhavji et al. (2006) explore what software evolution is and why
it is inevitable. They address the phenomenological and technological
underpinnings of software evolution, and it explain the role of feedback in
software maintenance. Mens and Demeyer (2007) present the state-of-the-art
and emerging topics in software evolution research.

ACKNOWLEDGMENTS

We would like to thank our colleagues Robert Meersman and Stijn
Christiaens in Brussels for the valuable discussions about theory and case,
and for reviewing the text during the preparation of this document.

REFERENCES

Andany, J., Léonard, M., and Palisser, C. (1991) Management of Schema Evolution in
Databases. In Proc. of the 17th Int’l Conf. on Very Large Data Bases (Barcelona, Spain),
Morgan-Kaufmann, pp. 161–170

Aschoff, F.R., Schmalhofer, F., van Elst, L. (2004) Knowledge mediation: A procedure for
the cooperative construction of domain ontologies. In Proc. of Workshop on Agent-
Mediated Knowledge Management at the 16th European Conference on Artificial
Intelligence (ECAI’2004) (Valencia, Spain), pp. 20–28

17 http://www.dogma-mess.org

5. Ontology Evolution 171

Bachimont, B., Troncy, R., Isaac, A. (2002) Semantic commitment for designing ontologies: a

proposal. In Gómez-Pérez, A., Richard Benjamins, V., eds.: Proc. of the 13th Int’l Conf.
on Knowledge Engineering and Knowledge Management. Ontologies and the
SemanticWeb (EKAW 2002) (Siguenza, Spain), Springer Verlag, pp. 114–121

Banerjee, J., Kim, W. Kim, H., and Korth., H. (1987) Semantics and implementation of
schema evolution in object-oriented databases. Proc. ACM SIGMOD Conf. Management
of Data, 16(3), pp. 311–322

Bennett, K. and Rajlich, V. (2000) Software Maintenance and Evolution: A Roadmap. In:
Finkelstein, A. (ed.) The Future of Sotware Engineering, Finkelstein, ACM Press.

Boehm, B. W. (1988). A spiral model of software development and enhancement. IEEE
Computer 21(5), IEEE Computer Society Press, pp. 61–72

Bouaud, J., Bachimont, B., Charlet, J., and Zweigenbaum, P. (1995) Methodological
Principles for Structuring an “Ontology.” In Proc. IJCAI95 Workshop on Basic
Ontological Issues in Knowledge Sharing” (Montreal, Canada)

Bohner, S. and Arnold, R. (1996) Software change impact analysis. IEEE Computer Society
Press

Brachman, R., McGuiness, D., Patel-Schneider, P., Resnik, L., and Borgida, A. (1991) Living
with classic: When and how to use a KL-ONE-like language. In Sowa, J., ed.: Principles
of Semantic Networks, Morgan Kaufmann, pp. 401–456

Chikofsky, E.J. and Cross, J.H. (1990) Reverse engineering and design recovery: A
taxonomy. IEEE Software 7(1), pp. 13–17

Chaudhri, V.K., Farquhar, A., Fikes, R., Karp, P.D, and Rice, J.P. (1998) OKBC: A
Programmatic Foundation for Knowledge Base Interoperability. In Proc. AAAI’98
Conference (Madison, WI), AAAI Press

Clarke, E.M., Grumberg, O., and Peled, D.A. (2000) Model Checking, MIT Press.
Codd, E. (1972) Further Normalisation of the Database Relational Model. In Rustin, R. (ed.)

Database Systems, Prentice-Hall, pp. 33–74
Conradi, R. and Westfechtel, B. (1998) Version Models for Software Configuration

Management. ACM Computing Surveys 30(2): 232–282
de Bruijn, J., Lausen, H., Pollares, A., and Fensel, D. (2006) The Web Service Modeling

Language WSML: An Overview. In Proc. 3rd European Semantic Web Conference
(ESWC 2006). LNCS 4011, Springer

De Leenheer, P. (2004) Revising and Managing Multiple Ontology Versions in a Possible
Worlds Setting. In Proc. On The Move to Meaningful Internet Systems Ph.D. Symposium
(OTM 2004) (Agia Napa, Cyprus), LNCS 3292, Springer-Verlag, pp. 798–818

De Leenheer, P., de Moor, A. (2005) Context-driven disambiguation in ontology elicitation.
In Shvaiko, P., Euzenat, J., eds.: Context and Ontologies: Theory, Practice, and
Applications. Proc. 1st Context and Ontologies Workshop, AAAI/IAAI 2005 (Pittsburgh,
USA), pp. 17–24

De Leenheer, P., de Moor, A., and Meersman, R. (2007) Context Dependency Management in
Ontology Engineering: a Formal Approach. Journal on Data Semantics VIII, LNCS 4380,
Springer-Verlag, pp. 26–56

De Leenheer, P., Kopecky, J., Sharf, E., and de Moor, A. (2006) A Versioning Tool for
Ontologies. DIP EU Project (FP6-507483) WP2: Ontology Management, Deliverable nr.
D2.4

de Moor, A. (2002) Language/action meets organisational semiotics: Situating conversations
with norms. Information Systems Frontiers, 4(3):257–272

de Moor, A. (2005) Ontology-guided meaning negotiation in communities of practice. In
Mambrey, P., Gräther, W., eds.: Proc. Workshop on the Design for Large-Scale Digital
Communities, 2nd Int’l Conf. Communities and Technologies (C&T 2005) (Milano, Italy)

172 Chapter 5

de Moor, A., De Leenheer, P., and Meersman, R. (2006) DOGMA-MESS: A meaning

evolution support system for interorganisational ontology engineering. In Proc. 14th Int’l
Conf. Conceptual Structures (ICCS 2006) (Aalborg, Denmark), LNAI 4068, Springer
Verlag, pp 189–203

de Moor, A. and Weigand, H. (2007) Formalizing the evolution of virtual communities. Inf.
Syst., 32(2):223–247

De Troyer, O. (1993) On Data Schema Transformation, PhD Thesis, University of Tilburg,
Tilburg, The Netherlands.

Diaz, A. (2005) Supporting Divergences in Knowledge Sharing Communities. PhD Thesis,
Univesité Henry Poincarè, Nancy I, France.

Edwards, W.K. (1997) Flexible Conflict Detection and Management in Collaborative
Applications, Proc. Symp. User Interface Software and Technology, ACM Press

Ehrig, H., Kreowski, H.-J., Montanari, U., and Rozenberg G. (1999) Handbook of Graph
Grammars and Computing by Graph Transformation, Volume 3, World Scientific

Euzenat, J., Le Bach, T., Barrasa, J., et al. (2004) State of the art on ontology alignment.
Knowledge Web deliverable KWEB/2004/d2.2.3/v1.2

Feather, M.S. (1998) “Detecting Interference when Merging Specification Evolutions,” Proc.
5th Int’l Workshop Software Specification and Design, ACM Press, pp. 169–176.

Fellbaum, C., ed. (1998) Wordnet, an Electronic Lexical Database. MIT Press
Franconi, E., Grandi, F., and Mandreoli, F. (2000) A Semantic Approach for Schema

Evolution and Versioning in Object-oriented Databases. In Proc. 6th Int’l Conf. Rules and
Objects in Databases (DOOD 2000) (London, UK), Springer-Verlag, pp. 1048–1060

Fogel, K. and Bar, M. (2001) Open Source Development with CVS. The Coriolis Group, 2nd
edition

Gabel, T., Sure, Y., and Voelker, J. (2004) KAON — Ontology Management Infrastructure.
SEKT deliverable D3.1.1.a

Gaševic, D., Djuric, D., and Devedžic, V. (2006) Model Driven Architecture and Ontology
Development, Springer

Gómez-Pérez, A., Manzano-Macho, D. (2003) A survey of ontology learning methods and
techniques.OntoWeb Deliverable D1.5

Gray, J. (1981). The transaction concept: Virtues and limitations. Proc. 7th Int’l Conf. Very
Large Data Bases, pp. 144–154

Gruber, T.R. (1993) A translation approach to portable ontologies. Knowledge Acquisition
5(2):199–220

Guarino, N. (1998) Formal Ontology and Information Systems. In Guarino, N. (ed.), Proc. 1st
Int’l Conf. Formal Ontologies in Information Systems (FOIS98) (Trento, Italy), pp. 3-- 15,
IOS Press

Haase, P., Sure, Y., and Vrandečić, D. (2004) Ontology Management and Evolution: Survey,
Methods, and Prototypes. SEKT Deliverable D3.1.1

Haase, P. and Stojanovic, P. (2005) Consistent evolution of OWL ontologies. Proc. 2nd
European Conf. Semantic Web: Research and Applications. LNCS 3532, Springer, pp.
182–197

Halpin, T. (2001) Information Modeling and Relational Databases (From Conceptual
Analysis to Logical Design). Morgan Kauffman

Heflin, J. (2001) Towards the SemanticWeb: Knowledge Representation in a Dynamic,
Distributed Environment. PhD thesis, University of Maryland, Collega Park, MD, USA

Hepp, M., Van Damme, C., and Siorpaes, K. (2007) Folksontology: An integrated approach
for turning folksonomies into ontologies. In Proc. of the ESWC Workshop “Bridging the
Gap between Semantic Web and Web 2.0” (Innsbruck, Austria). Springer

5. Ontology Evolution 173

Hepp, M. (2007) Possible Ontologies: How Reality Constrains the Development of Relevant

Ontologies. In Internet Computing 11(1):90–96
Holsapple, C., and Joshi, K. (2002) Collaborative Approach in Ontology Design,

Communications of the ACM 45(2), ACM Press, pp. 42–47
Hunt, J. W., McIllroy, M.D. (1976) An Algorithm for Differential File Comparison, Technical

Report 41, AT&T Bell Laboratories Inc.
Jackson, D., and Ladd, D. A. (1994) Semantic Diff: A tool for summarizing the effects of

modifications. In Proc. Of the Int’l Conf. on Software Maintenance (ICSM), pp. 243–252,
IEEE Computer Society

Jarrar, M., Demey, J., Meersman, R. (2003) On reusing conceptual data modeling for
ontology engineering. Journal on Data Semantics 1(1):185–207

Jarrar, M. (2006) Position paper: towards the notion of gloss, and the adoption of linguistic
resources in formal ontology engineering. In Proc WWW 2006. ACM Press, pp. 497–503

Kalfoglou, Y., Schorlemmer, M. (2005) Ontology mapping: The state of the art. In Proc.
Dagstuhl Seminar on Semantic Interoperability and Integration (Dagstuhl, Germany).

Katz, R.H. (1990) Toward a Unified Framework for Version Modeling in Engineering
Databases. ACM Computing Surveys 22(4):375–408, ACM Press

Kim, W. and Chou, H. (1988) Versions of Schema for Object-oriented Databases. In Proc.
14th Int’l Conf. Very Large Data Bases (VLDB88) (L.A., CA.), Morgan Kaufmann. pp.
148–159

Kiryakov, A., Ognyanov, D., and Kirov, V. (2004) A Framework for Representing Ontologies
Consisting of Several Thousand Concepts Definitions. DIP Project Deliverable D2.2.

Klein, M., Kiryakov, A., Ognyanov, D., and Fensel, D. (2002) Ontology Versioning and
Change Detection on the Web. Proc. 13th European Conf. Knowledge Engineering and
Knowledge Management, pp. 192–212

Klein, M. and Noy, N. (2003) A Component-based Framework for Ontology Evolution. In
Proc. Workshop on Ontologies and Distributed Systems, IJCAI 2003 (Acapulco, Mexico).

Klein, M. (2004) Change Management for Distributed Ontologies. PhD Thesis, Vrije
Universiteit Amsterdam, Amsterdam, The Netherlands

Kotis, K., Vouros, G.A., Alonso, J.P. (2004) HCOME: tool-supported methodology for
collaboratively devising living ontologies. In Proc. of the 2nd Int’l Workshop on Semantic
Web and Databases (SWDB 2004), Springer

Kunz, W., Rittel, H.W.J. (1970) Issues as elements of information systems. Working Paper
131, Institute of Urban and Regional Development, University of California

Lerner, B. and Habermann, A. (1990) Beyond Schema Evolution to Database Reorganization.
In Proc. Joint ACM OOPSLA/ECOOP 90 Conf. Object-Oriented Programming: Systems,
Languages, and Applications (Ottawa, Canada), ACM Press, pp. 67–76.

Lerner, B. (2000) A model for compound type changes encountered in schema evolution.
ACM Transactions on Database Systems (TODS), 25(1):83{127, ACM Press, New York,
NY, USA.

Lippe, E. and van Oosterom, N. (1992) Operation-Based Merging. In Proc. 5th ACM
SIGSOFT Symp. Software Development Environments, ACM SIGSOFT Software
Engineering Notes, Vol. 17, No. 5, pp. 78–87.

Littlejohn, S.W. (1992) Theories of human communication (4th ed.). Belmont, CA:
Wadsworth Publishing Company

Madhavji, N.H.,, Fernandez-Ramil, J. and Perry, D.E. (2006) Software evolution and
feedback: Theory and practice. Wiley

Maedche, A., Motik, B. and Stojanovic, L. (2003) Managing multiple and distributed
ontologies on the Semantic Web. VLDB Journal 12, Springer, pp. 286–302

174 Chapter 5

McCarthy, J. (1993) Notes on formalizing context. In Proc. 15th Int’l Joint Conf. Artificial

Intelligence (IJCAI93) (Chambry, France), 555–560. Morgan Kaufmann.
Meersman, R. (1999) The use of lexicons and other computer-linguistic tools in semantics,

design and cooperation of database systems. In Proc. Conf. Cooperative Database Systems
(CODAS99), Springer Verlag, pp. 1–14.

Mens, T. (1999) Conditional Graph Rewriting as a Domain-Independent Formalism for
Software Evolution. Proc. Int’l Conf. Agtive 1999: Applications of Graph Transformations
with Industrial Relevance. Lecture Notes in Computer Science 1779, Springer-Verlag, pp.
127–143

Mens, T. (1999) A Formal Foundation for Object-Oriented Software Evolution. PhD Thesis,
Department of Computer Science, Vrije Universiteit Brussel, Belgium

Mens, T. (2002) A State-of-the-Art Survey on Software Merging. Transactions on Software
Engineering 28(5): 449–462, IEEE Computer Society Press

Mens, T., Van Der Straeten, R., and D’hondt, M. (2006) Detecting and resolving model
inconsistencies using transformation dependency analysis. In Proc. Int’l Conf.
MoDELS/UML 2006, LNCS 4199, Springer, pp. 200–214

Mens, T., Taentzer, G., and Runge, O. (2007) Analyzing Refactoring Dependencies Using
Graph Transformation. Journal on Software and Systems Modeling, September, Springer,
pp. 269–285

Mens, T. and Demeyer, S. (2007) Software Evolution. Springer
Munson, J.P. and Dewan, P. (1994) A flexible object merging framework. In Proc. ACM

Conf. Computer Supported Collaborative Work, ACM Press, pp. 231–241
Nguyen, G. and Rieu, D. (1989) Schema Evolution in Object-Oriented Database Systems.

Data and Knowledge Engineering 4(1):43–67
Nonaka, I. and Takeuchi,, H. (1995) The Knowledge-Creating Company : How Japanese
Companies Create the Dynamics of Innovation. Oxford University Press
Noy, N.F., Klein, M.: Ontology evolution: Not the same as schema evolution. Knowledge and

Information Systems 6(4) (2004) 428–440
Noy, N.F. and Musen, M. A. (2002). PromptDiff: A Fixed-Point Algorithm for Comparing

Ontology Versions. In the Proc. 18th National Conf. Artificial Intelligence (AAAI–2002)
(Edmonton, Alberta), AAAI Press

Nuseibeh, B., Easterbrook, S., and Russo, A. (2000) Leveraging inconsistency in software
development. IEEE Computer, 33(4):24–29

Oliver, D., Shahar, Y., Musen, M., Shortliffe, E. (1999) Representation of change in
controlled medical terminologies. AI in Medicine 15(1):53–76

Parsia, B., Sirin, E., and Kalyanpur, A. (2005) Debugging OWL ontologies. Proc. 14th Int’l
Conf. World Wide Web, ACM Press, pp. 633–640

Penney, D. and Stein, J. (1987) Class Modification in the GemStone Object-oriented DBMS.
In Proc. Int’l Conf. Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA) (Orlando, FL), pp. 111–117.

Peters, R. and Özsu, M. (1997) An Axiomatic Model of Dynamic Schema Evolution in
Objectbase Systems. ACM Transactions on Database Systems 22(1):75–114.

Plessers, P. and De Troyer, O. (2006) Resolving Inconsistencies in Evolving Ontologies. In
Proc. 3rd European Semantic Web Conference (ESWC 2006), Springer, pp. 200–214

Plessers, P. (2006) An Approach to Web-based Ontology Evolution. PhD Thesis, Department
of Computer Science, Vrije Universiteit Brussel, Brussel, Belgium

Proper, H.A. and Halpin, T.A. (1998) Conceptual Schema Optimisation: Database
Optimisation before sliding down the Waterfall. Technical Report 341, Department of
Computer Science, University of Queensland, Australia

5. Ontology Evolution 175

Putnam, L. and Poole, M. (1987) Conflict and Negotiation. In Porter, L. (ed.) Handbook of

Organizational Communication: an Interdisciplinary Perspective, pp. 549–599, Newbury
Park: Sage

Ra, Y. and Rundensteiner, E. (1997) A Transparant Schema-evolution System Based on
Object-oriented view technology. IEEE Trans. of Knowledge and Data Engineering,
9(4):600–623

Rajlich, V. (1997) A model for change propagation based on graph rewriting. Proc. Int’l
Conf. Software Maintenance, IEEE Computer Society Press, pp. 84–91

Ramil, J. F. (2003) Continual Resource Estimation for Evolving Software. PhD Thesis,
Department of Computing, Imperial College, London, United Kingdom

Reinberger, M.L., Spyns, P. (2005) Unsupervised text mining for the learning of DOGMA-
inspired ontologies. In: Buitelaar P., Handschuh S., and Magnini B.,(eds.), Ontology
Learning and Population, IOS Press

Roddick, J., Craske, N., and Richards, T. (1993) A Taxonomy for Schema Versioning Based
on the Relational and Entity Relationship Models, In Proc. the 12th Int’l Conf. on
Conceptual Modeling / the Entity Relationship Approach (Dallas, TX), Springer, pp. 143–
154

Roddick, J. (1995) A Survey of Schema Versioning Issues for Database Systems, in
Information and Software Technology 37(7):383–393

Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara, R., Stollberg, M., Polleres, A., Feier,
C., Bussler, C., and Fensel, D. (2005) Web Service Modeling Ontology. In Journal of
Applied Ontology 1(1):77–106, IOS Press

Sanderson, D. (1994) Cooperative and collaborative mediated research. In Harrison, T. and
Stephen, T. (eds.) Computer networking and scholarly communication in the twenty-first
century, State University of New York Press, pp. 95–114

Skarra, A.H. and Zdonik, S.B. (1986) The Management of Changing Types in an
Objectoriented Database. In Proc. Int’l Conf. on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA 1986) (Portland, Oregon), pp. 483–495

Sneed, H. (1995) Estimating the Costs of Software Maintenance Tasks. In Proc. Int’l Conf.
Sotware Maintenance (ICSM), pp. 168–181

Sowa, J. (1984) Conceptual Structures: Information Processing in Mind and Machine.
Addison-Wesley

Schoop, M., de Moor, A., Dietz, J. (2006) The pragmatic web: A manifesto. Communications
of the ACM 49(5)

Simperl, E., Tempich, C., and Mochol, M. (2007) Cost estimation for ontology development:
applying the ONTOCOM model. In Abramowicz, W. and Mayr, H. Technologies for
Business Information Systems, Springer, pp. 327–339

Spanoudakis, G. and Zisman, A. (2001) Inconsistency management in software engineering:
Survey and open research issues. Handbook of software engineering and knowledge
engineering, World Scientific, pp. 329–390

Spyns, P., Meersman, R., Jarrar, M. (2002) Data modelling versus ontology engineering.
SIGMODRecord 31(4):12–17

Stamper, R. (1992) Linguistic Instruments in Knowledge Engineering, chapter Language and
Computing in Organised Behaviour, Elsevier Science Publishers, pp. 143–163

Stojanovic, L., Maedche, A., Motik, B., and Stojanovic, N. (2002) User-driven ontology
evolution management. Proc. 13th European Conf. Knowledge Engineering and
Knowledge Management. pp. 285–300

Stojanovic, L. (2004) Methods and tools for ontology evolution. PhD Thesis, University of
Karlsruhe, Karlsruhe, Germany

176 Chapter 5

Tempich, C., Pinto, S., Sure, Y., and Staab, S. (2005) An Argumentation Ontology for

Distributed, Loosely-controlled and evolving Engineering processes of ontologies . In
Proc. of the 2nd European Semantic Web Conference (ESWC, 2005), LNCS 3532,
Springer, pp. 241–256

Verheijen, G., Van Bekkum, J. (1982) NIAM, an information analysis method. In: Proc. IFIP
TC-8 Conf. Comparative Review of Information System Methodologies (CRIS 82), North-
Holland

Wang, H., Horridge, M., Rector, A., Drummond, N., and Seidenberg, J. (2005) Debugging
OWL-DL ontologies: A heuristic approach. Proc. 4th Int’l Conf. Semantic Web. Springer-
Verlag

Westfechtel, B. (1991) Structure-Oriented Merging of Revisions of Software Documents.
Proc. Int’l Workshop on Software Configuration Management. ACM Press, pp. 68–79

Chapter 6

ONTOLOGY ALIGNMENTS
An Ontology Management Perspective

Jérôme Euzenat1, Adrian Mocan2, and François Scharffe2

1INRIA Rhône-Alpes & LIG, 655 avenue de l’Europe, F-38330 Montbonnot Saint-Martin,
France, Jerome.Euzenat@inrialpes.fr; 2Innsbruck Universität, 21a Technikerstrasse, A-6020
Innsbruck, Austria, Adrian.Mocan@deri.at, Francois.Scharffe@deri.at

Abstract: Relating ontologies is very important for many ontology-based applications
and more important in open environments like the Semantic Web. The
relations between ontology entities can be obtained by ontology matching and
represented as alignments. Hence, alignments must be taken into account in
ontology management. This chapter establishes the requirements for alignment
management. After a brief introduction to matching and alignments, we justify
the consideration of alignments as independent entities and provide the
lifecycle of alignments. We describe the important functions of editing,
managing and exploiting alignments and illustrate them with existing
components.

Key words: alignment management; alignment server; mapping; ontology alignment;
ontology matching; ontology mediation

1. RELATING ONTOLOGIES: FROM ONTOLOGY
ISLANDS TO CONTINENT

In many applications, ontologies are not used in isolation. This can be
because several ontologies, representing different domains have to be used
within the same application, e.g., an ontology of books with an ontology of
shipping for an on-line bookstore, or because different ontologies are
encountered dynamically, e.g., different ontologies from different on-line
bookstores to choose from.

These ontologies must be related together for the ontology-based
application to work properly. In the context of ontology management, these

178 Chapter 6

relations may be used for composing at design time the different ontology
parts that will be used by the applications (either by merging these
ontologies or by designing data integration mechanisms), for dealing with
different versions of ontologies that may be found together at design time, or
for anticipating the need for dynamically matching encountered ontologies at
run time.

We call “ontology matching” the process of finding the relations between
ontologies and we call alignment the result of this process expressing
declaratively these relations.

In an open world in which ontologies evolve, managing ontologies
requires using alignments for expressing the relations between ontologies.
We have defended elsewhere the idea that for that purpose the use of
alignments is preferable to using directly mediators or transformations
(Euzenat, 2005). We go one step further here by proposing that ontology
management involves alignment management.

In the remainder we first briefly present what ontology matching is and
where it is used (Section 2). Then, we consider some requirements and
functions for alignment management addressing the alignment lifecycle
(Section 3). Following this lifecycle we present in more details how to
address these requirements in what concerns alignment editing (Section 4),
alignment storing and sharing (Section 5) and finally alignment processing
(Section 6). We then consider existing systems that feature to some extent
ontology management capabilities (Section 7).

2. ONTOLOGY MATCHING AND ALIGNMENTS

We present in deeper details what is meant by an alignment and provide
some vocabulary as it will be used in this chapter (Section 2.1). Then we
discuss the different applications that can take advantage of matching
ontologies (Section 2.2). We identify some characteristics of these
applications in terms of exploitation of the alignments. Finally, we provide
an overview of the various matching techniques available (Section 2.3).
Complete coverage of these issues can be found in (Euzenat and
Shvaiko, 2007).

When we talk about ontologies, we include database schemas and other
extensional descriptions of data which benefit from matching as well.

2.1 Alignments for expressing relations

The ontology matching problem may be described in one sentence: given
two ontologies each describing a set of discrete entities (which can be

6. Ontology Alignments 179

classes, properties, rules, predicates, or even formulas), find the
correspondences, e.g., equivalence or subsumption, holding between these
entities. This set of correspondences is called an alignment.

Given two ontologies o and o', alignments are made of a set of
correspondences (called mappings when the relation is oriented) between
(simple or complex) entities belonging to o and o' respectively. A
correspondence is described as a quadruple <e, e', r, n> such that:

• e and e' are the entities, e.g., formulas, terms, classes, individuals,
between which a relation is asserted by the correspondence.

• r is the relation declared to hold between e and e' by the correspondence.
This relation can be a simple set-theoretic relation (applied to entities
seen as sets or their interpretation seen as sets), a fuzzy relation, a
probabilistic distribution over a complete set of relations, a similarity
measure, etc.

• n is a degree of confidence associated with that correspondence (this
degree does not refer to the relation r, it is rather a measure of the trust
in the fact that the correspondence is appropriate — “I trust 70% the fact
that the correspondence is correct, reliable, etc.” — and can be compared
with the certainty measures provided by meteorological agencies). The
trust degree can be computed in many ways, including user feedback or
log analysis.

So, the simplest kind of correspondence (level 0) is:

URI1 = URI2

while a more elaborate one could be:

employee(x,y,z) <=.85 empno(x,w) & name3(w,concat(y,' ',z))

The first one expresses the equivalence (=) of what is denoted by two
URIs (with full confidence). These URI can be the denotations of classes,
properties or instances. The second one is a Horn-clause expressing that if
there exists a w such that empno(x,w) — w’s identifier is x — and
name(w,concat(y,' ',z)) — the name of w is the result of the concatenation of
string y, ' ' and z — are true in one ontology then employee(x,y,z) must be
true in the other one (and the confidence is here quantified with a degree
equal to .85). Of course, in this last example, functions and predicates can
also be identified by URIs.

180 Chapter 6

As can be observed from these two examples, alignments in themselves
are not tied to a particular language. But in order to use complex alignments
like the second one, systems must be able to understand the language in
which formulas and relations are expressed. This is supported through the
definition of a particular subtype of alignment.

Since everyone does not share the same terminology, we define below,
according to (Euzenat and Shvaiko, 2007), the various terms used in this
chapter:

• alignment is the result of the matching task: it is a set of
correspondences;

• bridge axioms are formulas in an ontology language that expresses the
relations as assertions on the related entities. They are used when
merging ontologies.

• correspondence is the relation holding (or supposed to hold according
to a particular matching algorithm or individual) between two entities of
different ontologies. These entities can be as different as classes,
individuals, properties or formulas. Some authors use the term
“mapping” or “mapping rule” that will not be used here;

• matching is the task of comparing two ontologies and finding the
relationships between them;

• mediator a mediator is a software module (Wiederhold, 1992),
providing interoperability between heterogeneous knowledge sources. In
query application it is a dual pair of translations that transforms the
query from one ontology to another and that translate the answer back.

• merging ontologies consists of creating a new ontology out of two or
more ontologies. Ontology merging first involves the definition of an
alignment between the ontologies to be merged.

• transformation is a program that transforms an ontology from one
ontology expression language to another;

• translation is a program that transforms formulas with regard to some
ontology into formulas with regard to another ontology (translation can
be implemented by a set of translation rules, an XSLT stylesheet or a
more classical program).

2.2 Applications

Several classes of applications can be considered (they are more
extensively described in (Euzenat and Shvaiko, 2007), we only summarize
them here). They are the following:

1 http://www.foaf-project.org
2 http://www.w3.org/TR/vcard-rdf

6. Ontology Alignments 181

• Ontology evolution uses matching for finding the changes that have

occurred between two ontology versions. See Chapter 5 of this book.
• Schema integration uses matching for integrating the schemas of

different databases under a single view;
• Catalog integration uses matching for offering an integrated access to

on-line catalogs;
• Data integration uses matching for integrating the content of different

databases under a single database;
• P2P information sharing uses matching for finding the relations

between ontologies used by different peers;
• Web service composition uses matching between ontologies describing

service interfaces in order to compose Web services by connecting their
interfaces;

• Multiagent communication uses matching for finding the relations
between the ontologies used by two agents and translating the messages
they exchange;

• Context matching in ambient computing uses matching of application
needs and context information when applications and devices have been
developed independently and use different ontologies;

• Query answering uses ontology matching for translating user queries
about the Web;

• Semantic Web browsing uses matching for dynamically (while
browsing) annotating Web pages with partially overlapping ontologies.

It is clear, from the above examples, that matching ontologies is a major
issue in ontology related activities. It is not circumscribed to one area of
ontology, but applies to any application that communicates through
ontologies.

These kinds of applications have been analysed in order to establish their
requirements with regard to matching systems. The most important
requirements concern:

• the type of available input a matching system can rely on, such as
schema or instance information. There are cases when data instances are
not available, for instance due to security reasons or when there are no
instances given beforehand. Therefore, these applications require only a
matching solution able to work without instances (here schema-based
method).

• some specific behaviour of matching, such as requirements of (i) being
automatic, i.e., not relying on user feed-back; (ii) being correct, i.e., not
delivering incorrect matches; (iii) being complete, i.e., delivering all the
matches; and (iv) being performed at run time.

182 Chapter 6

• the use of the matching result as described above. In particular, how the

identified alignment is going to be processed, e.g., by merging the data
or conceptual models under consideration or by translating data
instances among them.

In particular, there is an important difference between applications that
need alignments at design time and those that need alignments at run time.

Ontology evolution is typically used at design time for transforming an
existing ontology which may have instances available. It requires an
accurate, i.e., correct and complete, matching, but can be performed with the
help of users. Schema, catalogue and data integration are also performed off-
line but can be used for different purposes: translating data from one
repository to another, merging two databases or generating a mediator that
will be used for answering queries. They also will be supervised by a human
user and can provide instances.

Other applications are rather performed at run time. Some of these, like
P2P information sharing, query answering and Semantic Web browsing are
achieved in presence of users who can support the process. They are also
less demanding in terms of correctness and completeness because the user
will directly sort out the results. On the other hand, Web service
composition, multiagent communication and context matching in ambient
computing require matching to be performed automatically without
assistance of a human being. Since, the systems will use the result of
matching for performing some action (mediating or translating data) which
will be feed in other processes, correctness is required. Moreover, usually
these applications do not have instance data available.

The difference between design time and run time is very relevant to
ontology management. On the one hand, if alignments are required at design
time, then ontology developers will need support in creating, manipulating
and using these alignments. They should be supported in manipulating
alignments during the whole ontology lifecycle (see Chapter 3 of this book).

On the other hand, if alignments are required at run time, then one way of
ensuring timely and adequate response may be to find some existing
alignment in an alignment store. Alignments stored there should be carefully
evaluated and certified alignments. They thus require alignment management
on their own.

2.3 Matching ontologies

The matching operation determines the alignment A' for a pair of
ontologies o and o'. There are some other parameters that can extend the
definition of the matching process, namely:

6. Ontology Alignments 183

1. the use of an input alignment A, which is to be completed by the process;
2. the matching parameters, p, e.g., weights, thresholds; and
3. external resources used by the matching process, r, e.g., common

knowledge or domain specific thesauri.

So, the matching process can be seen as a function f which, from a pair of
ontologies o and o', an input alignment A, a set of parameters p and a set of
resources r, returns an alignment A' between these ontologies:

A' = f(o, o', A, p, r)

There have already been many reviews of ontology matching algorithms
(Rahm and Bernstein, 2001; Wache et al., 2001; Kalfoglou and
Schorlemmer, 2003, Euzenat and Shvaiko, 2007)3 so we will be brief and
refer the reader to these presentations.

Figure 6-1. The ontology matching process: it establishes an alignment (A) from two
ontologies (o and o') and optionally an input alignment (A'), parameters and external
resources.

Ontology matching consists of generating an alignment from two (or
more) ontologies. There are many different features of ontologies that are
usually used for providing matching:

• terminological techniques are based on the text found within ontologies
for identifying ontology entities (labels), documenting them (comments)
or other surrounding textual sources (related element labels). These
techniques come from natural language processing and information
retrieval. They can use the string structure themselves, e.g., string
distances, the ontology as corpus, e.g., statistical measures based on the

3 In fact, the ontology matching builds on previous research done in databases and

information integration.

184 Chapter 6

frequency of occurrence of a term, or external resources, such as
dictionaries.

• structural techniques are based on the relations between ontology
entities. These can be relations between entities and their attributes,
including constraints on their values, or relations with other entities.
These techniques take advantage of type comparison techniques or more
elaborate graph techniques, e.g., tree distances, path matching, graph
matching.

• extensional techniques compare the extension of entities. These
extensions can be made of other entities, e.g., instances, as well as
related resources, e.g., indexed documents. They differ depending on if
the two ontologies share resources, e.g., they index the same set of
documents, or not (in which case a similarity between the extensions
may be established). These techniques can come from data analysis and
statistics.

• semantic techniques are based on the semantic definition of ontologies.
They use extra formalised knowledge and theorem provers for finding
consequences of a particular alignment. This can be used for expanding
the alignment or, on the contrary, for detecting conflicting
correspondences.

Of course, most of the systems combine several techniques in order to
improve their results. The techniques can be combined by aggregating
distance results (Van Hage, 2005), by using selection functions for choosing
which one to use in the present case (Jian et al., 2005; Tang et al., 2006), or
by deeply involving them all in global distance computation (Euzenat and
Valtchev, 2004, Melnik et al., 2002).

Moreover, there is a difference when training sets are available or not
(this is most often useful when a matching algorithm is needed for
recognising instances). When available, one can apply machine learning
techniques such as Bayes learning, vector support machines or decision
trees.

As a conclusion, many applications need ontology matching for many
different purposes. Ontology matching can, in turn, be obtained by many
different techniques that can be combined in many different ways. Currently,
matching systems are not usable automatically on real scale ontologies.
Their results loss in accuracy as the ontologies gain in size, complexity and
heterogeneity. They are usable in particular contexts such as databases for
which common identifiable data exists or evolutionary versions of
ontologies. Consequently, matching systems are currently used interactively
or semi-automatically so that users control and improve the quality of the
result. In this context, the help of matching algorithms is as powerful as the
ontologies grow in size and complexity.

6. Ontology Alignments 185

Current scale of using such systems is not known otherwise than from
their providers. However, some commercial systems are available, especially
in the area of database and directory integration showing serious interest. A
good way to approach the performances of matching algorithms is to follow
the yearly Ontology Alignment Evaluation Initiative campaigns4.

This difficulty of obtaining usable alignments calls for proper alignment
management beside ontology management. We consider this in the next
section.

3. TOWARDS ALIGNMENT MANAGEMENT

We first identify why alignments should be considered in isolation
(Section 3.1). We then present what should be an alignment lifecycle from
the standpoint of ontology management (Section 3.2) and elicit the
requirements for supporting this lifecycle (Section 3.3). Finally we describe
a set of services and tools that can be provided for fulfilling these
requirements (Section 3.4). The further sections will present in more details
possible implementations of these services.

3.1 Why supporting alignments?

The reasons for supporting alignments have been provided in Section 2:
many applications use them for different purposes using various matching
algorithms combined in multiple ways.

As heterogeneous ontologies are a global problem for many applications,
this calls for an infrastructure able to help these different applications to deal
with it. In such a way, the effort of interoperating ontologies does not need
to be solved for each kind of use.

Moreover, given the difficulty of the matching task, there are few
algorithms available and when good alignments are available, they are worth
sharing.

Supporting alignments has notable advantages over supporting other kind
of matching results such as transformations, mediator implementations or
merged ontologies. There are several reasons for this:

• Sharing matching algorithms: Many different applications have
matching needs. It is thus appropriate to share the solutions to these
problems, the matching algorithms and systems, across applications.

4 http://oaei.ontologymatching.org

186 Chapter 6

• Sharing alignments: Alignments are quite difficult to provide. There is

no magic algorithm for quickly providing a useful alignment. Once high
quality alignments have been established — either automatically or
manually — it is very important to be able to store, share and reuse them.

• Sharing exploitation means: Matching results, once expressed as
alignments, may be used for different purposes. Hence, a good matching
algorithm does not have to be reimplemented for merging ontologies or
for transforming new data: the same implementation will be reused
together with mediator generators for exploiting the alignment in
different mediation scenarios.

• Combining matchers: If one wants to combine several matching
systems in a particular application, this is easier if all the systems can
exchange their results in a pivot language. This is illustrated in Figure 6-
2.

Figure 6-2. Alignment passing from tools to tools. Two matchers (m and m') are first run in
parallel from the given ontologies, their resulting alignments are aggregated (a) resulting in
another alignment which will be improved by another method (m'') before generating (g) a
transformation program from it.

So, considering ontology alignments as first class citizens, has several
benefits:

• from a software engineering point of view, as alignments can be passed
from a program to another.

• from an ontology engineering and management point of view, as they
will evolve together with the ontology lifecycle.

3.2 The alignment lifecycle

Like ontologies, alignments have their own lifecycle (see Figure 6-3).
They are first created through a matching process (which may be manual).
Then they can go through an iterative loop of evaluation and enhancement.
Again, evaluation can be performed either manually or automatically, it

6. Ontology Alignments 187

consists of assessing properties of the obtained alignment. Enhancement can
be obtained either through manual change of the alignment or application of
refinement procedures, e.g., selecting some correspondences by applying
thresholds. When an alignment is deemed worth publishing, then it can be
stored and communicated to other parties interested in such an alignment.
Finally, the alignment is transformed into another form or interpreted for
performing actions like mediation or merging.

Figure 6-3. The ontology alignment lifecycle.

To this first independent cycle is added the joint lifecycle that can tie
ontologies and alignments. As soon as ontologies evolve, new alignments
have to be produced for following this evolution. This can be achieved by
recording the changes made to ontologies and transforming these changes
into an alignment (from one ontology version to the next one). This can be
used for computing new alignments that will update the previous ones. In
this case, previously existing alignments can be replaced by the composition
of themselves with the ontology update alignment (see Figure 6-4).

Figure 6-4 Evolution of alignments. When an ontology o evolves into a new version o1, it is
necessary to update the instances of this ontology (d) and the alignments (A) it has with other
ontologies (o'). To that extent, a new alignment (A') between the two versions can be
established and it can be used for generating the necessary instance transformation (T) and
updated alignments (A•A').

188 Chapter 6

Taking seriously ontology management requires to involve alignment
management with ontology management. However, so far very few tools
offer support for alignment management, let alone, joint ontology-alignment
support.

3.3 Requirements for alignment support

Ontology alignments , like ontologies, must be supported during their
lifecycle phases by adequate tools. These required functions can be
implemented by services. The most notable services are:

• Matching two ontologies possibly by specifying the algorithm to use
and its parameters (including an initial alignment).

• Storing an alignment in persistent storage.
• Retrieving an alignment from its identifier.
• Retrieving alignment metadata from its identifier can be used for

choosing between specific alignments.
• Suppressing an alignment from the current alignment pool.
• Finding (stored) alignments between two specific ontologies.
• Editing an alignment by adding or discarding correspondences (this is

typically the result of a graphic editing session).
• Trimming alignments over a threshold.
• Generating code implementing ontology transformations, data

translations or bridge axioms from a particular alignment.
• Translating a message with regard to an alignment.
• Finding a similar ontology is useful when one wants to align two

ontologies through an intermediate one.

For instance, someone wanting to translate a message expressed in
ontology o to ontology o'' can ask for matching the two ontologies and for a
translation of the message with regard to the obtained alignment. A more
extreme scenario involves (1) asking for alignments between o and o'',
maybe resulting in no alignment, (2) asking for an ontology close to o''
which may result in ontology o' , (3) asking for the alignments between o
and o', which may return several alignments a, a' and a'', (4) asking for the
metadata of these alignments and (5) choosing a' because it is certified by a
trusted authority, (6) matching o' and o'' with a particular algorithm, (7)
trimming the result over a reasonable threshold for this algorithm, (8) editing
the results so that it seems correct, (9) storing it in the server for sharing it
with other people, (10) retrieving alignment a' and this latter one as data
translators, (11) finally applying these two translations in a row to the initial
message.

6. Ontology Alignments 189

Most of these services correspond to primitives provided by the
Alignment API (Euzenat 2004). They require, in addition, several features
extending traditional matching frameworks:

• The ability to store alignments, whether they are provided by automatic
means or by hand;

• Their proper annotation in order for the clients to evaluate the
opportunity to use one of them or to start from it (this starts with the
information about the matching algorithms, and can be extended to the
justifications for correspondences that can be used in agent
argumentation);

• The ability to generate knowledge processors such as mediators,
transformations, translators, rules as well as to apply these processors if
necessary;

• The possibility to find similar ontologies and to contact other such
services in order to ask them for operations that the current service
cannot provide by itself.

There is no constraint that the alignments are computed on-line or off-
line, i.e., they are stored in the alignment store, or that they are processed by
hand or automatically. This kind of information can however be stored
together with the alignment in order for the client to be able to discriminate
among them.

3.4 Example scenario: data mediation for Semantic Web
services

The remainder of this chapter presents in more depth the functions of
editing (Section 4), communicating (Section 5) and processing (Section 6)
alignments. We will neither consider the alignment creation which has been
the subject of much literature, nor the evaluation. Each of these functions
will be illustrated through a common example related to Semantic Web
services.

Web services represent one of the areas where data mediation is the most
required. Services are resources usually developed independently which
greatly vary from one provider to another in terms of the used data formats
and representation. By adding semantics to Web services, heterogeneity
problems do not disappear but require more intelligent dynamic and flexible
mediation solutions. Ontologies which carry most of these explicit semantics
become the crucial elements to support the identification and capturing of
semantic mismatches between models.

190 Chapter 6

Web Services Execution Environment (WSMX) is a framework that
enables discovery, selection, invocation and interoperation of Semantic Web
services (Mocan et al., 2006a). Ontology-based data mediation plays a
crucial role in enabling all the above mentioned service operations. Different
business actors use ontologies to describe their services internal business
logic, and, more importantly in this case, their data. Each of these actors uses
its own information system, e.g., WSMX, and tries to interact with other
actors, part of other (probably more complex) business processes (Figure 6-
5). A specialized component or service is needed to transform the data
expressed in terms of a given ontology (the source ontology) in the terms of
another ontology (target ontology), allowing the two actors to continue using
their own data representation formats. Being part of a run time process the
data (i.e. instances) transformation has to be performed completely
automatically. Also, due to the fact that such a mediator has to act in a
business environment, the result of the mediation process has to be correct
and complete at all time.

In order to achieve these three requirements (automation, correctness and
completion), the whole process is split in two phases: a design time phase
which covers the correctness and completion by involving the human
domain expert and the run time phase when the mediation is performed in an
automatic manner based on the alignments established at design time.

We will provide further details on these two phases in Section 4 and
Section 6; Section 5 will consider the management of the alignments
between these two phases.

Figure 6-5. Instance transformation scenario.

6. Ontology Alignments 191

4. DESIGN TIME ALIGNMENT SUPPORT

The first place where ontology heterogeneity can be found is while
designing an application. Ontology management environments (see Chapter
3 of this book) must support users in obtaining alignments and manipulating
them. We provide some requirements for such an environment and detail
further the Web Service Modeling Toolkit from this point of view.

4.1 Requirements

Design time alignment support requires first the ability to obtain an
alignment between two ontologies. This can be achieved by retrieving an
existing alignment, running a matching algorithm or creating an alignment
manually.

Retrieving an alignment requires that alignments are stored and
accessible somewhere. This can be done within the current ontology
management environment, either from the local disk or from a remote server.
If alignments are to be of good quality, it is preferable that the environment
provides access to remote servers storing alignments. We will come back to
this point in Section 6.

Running a matching algorithm requires the availability of such an
algorithm. Having several such algorithms available in an ontology
management environment seems highly desirable. Some tools provide
support for finding the correspondences, like Protégé through the Prompt
suite (Noy and Musen, 2003).

An often overlooked functionality of matching algorithms is their ability
to provide explanation for the provided alignments. Explanations can be
obtained by interacting with the matcher or by accessing metadata about a
stored alignment. (Shvaiko et al., 2005) explores the first alternative.

These alignments may also need to be manipulated. Most common
manipulations involve trimming correspondences under a threshold or
aggregating several alignments obtained on the same two ontologies.

Finally, creating an alignment manually requires an alignment editor. The
same alignment editor can be used for manipulating more precisely the
obtained alignments. They should provide a convenient display of the
currently edited alignments and the opportunity to discard, modify or add
correspondences. Ideally, from the alignment editor, all the design time
functions should be available. Since ontologies and alignments can be very
large, it is very challenging to offer intuitive alignment editing support.

The VisOn tool, developed by University of Montréal, is such a tool that
can be used for editing alignments in the Alignment API format. Prompt also

192 Chapter 6

offers such facilities. Other tools developed for database schema matching
could be adapted.

The Web Service Modeling Toolkit is an Integrated Development
Environment (IDE) for Semantic Web services which also provides ontology
engineering capabilities. Among other capabilities, WSMT offers a set of
tools for creating, editing and storing ontology alignments. In the following
section these WSMT features will be described in more details.

4.2 Example design-time tool: Web Service Modeling
Toolkit

As mentioned above, data mediation within a semantic environment such
as WSMX is a semi-automatic process where alignments between two
ontologies are created at design time and then applied at run time in order to
perform instance transformation in an automatic manner. Approaches for
automatic generation of ontology alignments do exist but their accuracy is
usually unsatisfactory for business scenarios and it is necessary for business
to business integration to have an engineer involved in creating and
validating the correspondences between ontologies. This is a non-trivial task
and the user should be guided through the process of creating these
alignments and ensuring their correctness.

Web Service Modeling Toolkit (WSMT) (Kerrigan et al., 2007) is a
Semantic Web service and ontology engineering toolkit, also featuring tools
capable of producing alignments between ontologies based on human user
inputs. It offers a set of methods and techniques that assist domain experts in
their work such as different graphical perspectives over the ontologies,
suggestions of the most related entities from the source and target ontology,
guidance throughout the matching process (Mocan et al., 2006b). The tools
and the domain expert work together in an iterative process that involves
cycles consisting of suggestions from the tool side and validation and
creation of correspondences from the domain expert side.

Within WSMT, alignments are expressed by using the Abstract Mapping
Language (AML) (Scharffe and de Bruijn, 2005) which is a formalism-
neutral syntax for ontology alignments. WSMT includes several tools and
editors meant to offer all the necessary support for editing and managing
such ontology alignments:

Alignment Validation: WSMT provides validation for the AML syntax
useful especially when alignments created in various tools need to be
integrated into the same application.

Alignment Text Editor: It provides a text editor for the human readable
syntax of AML. It provides similar features to that of a programming
language editor, e.g., a Java editor, including syntax highlighting, in line

6. Ontology Alignments 193

error notification, content folding and bracket highlighting. This editor
enables the engineer to create or modify correspondences through textual
descriptions. Such a tool is normally addressed to experts familiar with both
the domain and the alignment language.

Alignment View-based Editor: The View-based Editor provides
graphical means to create correspondences between ontologies. Such a tool
is addressed to those experts that are capable of understanding the problem
domain and who can successfully align the two heterogeneous ontologies but
they are not specialists in logical languages as well. Additionally, even if
domain experts have the necessary skills to complete the alignment by using
a text editor, a graphical mapping tool would allow them to better
concentrate on the heterogeneity problems to be solved and in principle to
maximize the efficiency of the overall mapping process. All the advantages
described above, have been acknowledged by other approaches as well
(Maedche et al., 2002; Noy and Musen, 2003). The View-based Editor
includes some of well-established classical methods, e.g. lexical and
structural suggestion algorithms, iterative alignment creation processes.
Additionally, this particular approach provides several new concepts and
strategies aiming to enhance the overall automation degree of the ontology
matching tool (Mocan and Cimpian, 2005). Three of the most important
features of this tool (views, decomposition and contexts) are presented
below.

A view (also referred to as a perspective in (Mocan et al., 2006b))
represents a viewpoint in displaying the entities defined in a particular
ontology; each view displays entities from the ontology in a two-level tree
structure. The graphical viewpoint adopted to visualize the source and the target
ontologies is important to simplify the design of the correspondences according
to their type. By switching between combinations of these views on the source
and the target ontologies, certain types of correspondences can be created using
the same operations, combined with mechanisms for ontology traversal and
contextualized visualization strategies.

Each view specifies what ontological entities should appear as roots or as
children in these trees, by switching the focus between various relationships
existing in the ontology. Views can be defined and grouped in pairs in such a
way to solicit specific skill sets, offering support for users profiling.
Currently, three types of views are available, namely PartOf (concepts as
roots and their attributes as children), InstanceOf (concepts as roots and their
attributes together with the values they can take as children) and RelatedBy
(attributes as roots and their domain or range as children); Figure 6-6
illustrates the creation of alignments by using combinations of these
perspectives.

194 Chapter 6

Figure 6-6 Mapping views in the AML View-Based Editor.

Decomposition is the process of bringing into focus the descriptive
information of the root items presented in the view tree by exploring their
children. A successful decomposition is followed by a context update. That
is, instead of displaying the whole ontology at a time, only a subset (the one
determined by decomposition) can be presented. Such subsets form the
source and target contexts. If views can be seen as a vertical projection over
ontologies, contexts can be seen as a horizontal projection over views.
Decomposition and contexts aims to improve the effectiveness of the
matching process by keeping the domain expert focused on the exact
heterogeneity problem to be solved and by assuring that all the problem-
related entities have been explored.

Mappings Views: The Mappings Views provide a light overview on the
alignment created either by using the Text Editor or the View-based Editor.
Instead of seeing the full description of an alignment (as quadruples in AML
syntax or grounded rules in an ontology language) the domain expert can
choose to see a more condensed version of this information: which are the
entities in the source and in the target that are matched and if there are some
special conditions associated with them.

Once a satisfying alignment has been designed, it can be stored and
managed so that it is available to whoever needs it.

6. Ontology Alignments 195

5. ONTOLOGY ALIGNMENT MANAGEMENT AND

MAINTENANCE

As mentioned in our requirements, the alignments should be stored and
shared adequately. In particular, if alignments between widely accepted
ontologies are required, they will have to be found over and over again. An
infrastructure capable of storing the alignments and of providing them on
demand to other users would be useful.

Alignment support can be implemented either as a component of an
ontology management tool and even being specific to each particular
workstation (see Section 7). However, in order to optimize sharing, which is
an important benefit of using alignments, it is better to store the alignments
in an independent alignment server. Such a server can be either used for
sharing alignments among a particular organization or open to the semantic
Web at large.

5.1 Alignment server for storing

Alignment servers are independent software components which offer a
library of matching methods and an alignment store that can be used by their
clients. In a minimal configuration, alignment servers contribute storing and
communicating alignments. Ideally, they can offers all the services identified
in Section 3 and in particular alignment manipulation.

Alignment servers serve two purposes: for design time ontology
matching, they will be components loosely coupled to the ontology
management environment which may ask for alignments and for exploiting
these alignments. For run time matching, the alignment servers can be
invoked directly by the application. So, alignment servers will implement the
services for both design time and run time matching at once.

These servers are exposed to clients, either ontology management
systems or applications, through various communication channels (Agent
communication messages, Web services) so that all clients can effectively
share the infrastructure. A server may be seen as a directory or a service by
Web services, as an agent by agents, as a library in ambient computing
applications, etc.

Alignment servers must be found on the Semantic Web. For that purpose
they can be registered by service directories, e.g., UDDI for Web services.
Services or other agents should be able to subscribe some particular results
of interest by these services. These directories are useful for other Web
services, agents, peers to find the alignment services.

In addition, servers can be grouped into an alignment infrastructure
which supports them in communicating together. They can be able to

196 Chapter 6

exchange the alignments they found and select them on various criteria. This
can be useful for alignment servers to outsource some of their tasks. In
particular, it may happen that:

• they cannot render an alignment in a particular format;
• they cannot process a particular matching method;
• they cannot access a particular ontology;
• a particular alignment is already stored by another server.

In these events, the concerned alignment server will be able to call other
servers. This is especially useful when the client is not happy with the
alignments provided by the current server, it is then possible to either deliver
alignments provided by other servers or to redirect the client to these servers.

Moreover, this opens the door to value-added alignment services which
use the results of other servers as a pre-processing for their own treatments
or which aggregates the results of other servers in order to deliver a better
alignment.

5.2 Sharing alignments

The main goal of storing alignments is to be able to share them among
different applications. Because, these applications have diverse needs and
various selection criteria, it is necessary to be able to search and retrieve
alignments on these criteria. Alignment metadata used for indexing
alignments are thus very important. So far, alignments contain information
about:

• the aligned ontologies;
• the language in which these ontology are expressed;
• the kind of alignment it is (1:1 or n:m for instance);
• the algorithm that provided it (or if it has been provided by hand);
• the confidence in each correspondence.

This information is already very precious and helps applications selecting
the most appropriate alignments. It is thus necessary that ontology matchers
be able to generate and alignment servers be able to store these metadata.
Oyster (Palma and Haase, 2005), a peer-to-peer infrastructure for sharing
metadata about ontologies that can be used in ontology management, has
been extending for featuring some metadata about alignments.

However, metadata schemes are extensible and other valuable
information may be added to alignment format, such as:

• the parameters passed to the generating algorithms;

6. Ontology Alignments 197

• the properties satisfied by the correspondences (and their proof if

necessary);
• the certificate from an issuing source;
• the limitations of the use of the alignment;
• the arguments in favor or against a correspondence (Laera et al., 2007).

All such information can be useful for evaluating and selecting
alignments and thus should be available from alignment servers.

5.3 Evolving and maintaining ontology alignments

Like ontologies, alignments are not cast in stone once and for all. In
particular, as ontologies evolve, it is necessary to evolve alignments
accordingly. However, it can be quite hard for the engineer to be aware of
the effects that these constant changes have. It is thus particularly important
to provide support for alignment evolution and maintenance in alignment
management environments.

Some tools, such as PrompDiff (Noy and Musen, 2003), are already
particularly good at finding alignments between versions of ontologies.
When such an alignment is made available, it is possible, as displayed in
Figure 6-4, to provide by composition new versions of the alignment tied to
the previous version and to migrate data.

WSMT offers a MUnit Testing View for the Abstract Mapping Language
which gives the engineer support to ensure that instances are being correctly
transformed. Users can define pairs of sources and targets, specifying that
the result of transforming the sources, using the existing alignments, should
be the targets. These tests can then be incrementally run by engineers when
alignment validation is required.

6. ALIGNMENT PROCESSING

Finally, once alignments are obtained, either using a graphical tool, as the
output of a matching algorithm, or retrieved from an alignment store, they
can be processed in concrete mediation scenarios. The following techniques
all require an alignment between the source and target ontologies in order to
be achieved.

• Query rewriting: a query addressed to a source ontology needs to be
rewritten in terms of a query for a target ontology.

• Instance transformation: a set of instances described under a source
ontology needs to be transformed into terms of a target ontology.

198 Chapter 6

• Ontology merging: a set of source ontologies need to be merged into a

one ontology.

The scenario determines the operation that must be processed: a Web
service data mediator, as the one presented in Section 3.5, requires
transformation of instances, while on-line catalog integration may require
query rewriting in order to query the various catalogs.

When applying instance transformation or query rewriting, the resulting
sets of instances may contain duplicates. For example, two similar products
sold by different vendors. In the case of ontology merging, it might also be
necessary to merge instances described by the merged ontologies. Again,
duplicates have to be identified in order to avoid their duplication in the
newly created ontology. The technique of merging similar instances is
known as instance identification and unification.

We describe these techniques in detail in the remaining of this section.
Their application often requires preprocessing of the alignment in order to
make it executable for the mediation system. Section 6.3 presents how
alignments are transformed between various formats, motivating the use of a
common alignment format for exchange between applications, algorithms
and tools.

6.1 Query rewriting and instance transformation

Applying query rewriting techniques consists, as the name suggests, of
rewriting a query in terms of a source ontology Os into terms of a target
ontology Ot. The rewriting engine takes as input the original query qs, the
alignment between Os and Ot, and returns a query qt in terms of Ot. Figure 6-
7 illustrates this process. Query rewriting has been largely studied in
database integration (Dushka and Genesereth, 1997).

Once the rewritten query addressed to the target ontology, the instances
eventually returned are described in terms of Ot. They might have to be
transformed to instances of Os in order to be further processed by the system.

Instance transformation is done by taking a set of instances described
under a source ontology Os, and transforming it to instances of a target
ontology Ot using the alignment between the two ontologies. New instances
of Ot classes are described, and attribute values are transformed (Scharffe
and de Bruijn, 2005) according to the alignment. This process may lead to
the creation of multiple target instances for one source instance, or,
inversely, to combine some source instances into one target instance.
Instance transformation, illustrated in Figure 6-7, is used in the example
scenario in Section 3.5.

6. Ontology Alignments 199

Figure 6-7. Query mediation (from (Euzenat and Shvaiko, 2007)). From two matched
ontologies o and o', resulting in alignment A, a mediator is generated. This allows the
transformation of queries expressed with the entities of the first ontology into a query using
the corresponding entities of a matched ontology and the translation back of the results from
the second ontology to the first one.

The two former techniques result in two sets of instances described
according to a single ontology. The different origin of these instances may
lead to duplicates. For instance, in a Web application integrating various on-
line catalogs, each described as an ontology, once the catalogs queried and
the results adapted to the reference ontology, it is likely that some products
are sold by many vendors. Similar products have to be identified in order to
be presented under the same one (eventually with the different prices kept
separated). Instance unification techniques are used to merge similar
instances by analyzing their attributes values, as well as the relations they
share with other instances.

Instance unification is also necessary after two ontologies have been
merged into one. Instances of the source ontologies then also need to be
merged, and duplicates removed. The next section presents the ontology
merging technique.

6.2 Merging

 There are cases where the ontologies are not kept separate but need to be
merged into a single new ontology. As an example, we can consider the case
of one vendor acquiring another; their catalog will probably be merged into a
single one. Ontology merging is realized by taking the two ontologies to be
merged and an alignment between these two ontologies. It results in a new
ontology combining the two source ontologies. The ontology merging
process can be fully automatized if an adequate alignment is provided
(Scharffe, 2007), but usually requires human intervention in order to solve

200 Chapter 6

conflicts and choose a merging strategy. Figure 6-8 illustrates the ontology
merging process.

Figure 6-8. Ontology merging (from (Euzenat and Shvaiko, 2007)). From two matched
ontologies o and o', resulting in alignment A, articulation axioms are generated. This allows
the creation of a new ontology covering the matched ontologies.

The techniques presented in the previous two subsections require only the
alignment as an input (they interpret it). As we will see in the next section,
this alignment may require a further step in order to be usable. This step is
tightly linked to the format in which the alignment is expressed.

6.3 Semantic data mediation

The mediation of the heterogeneous semantic data can be achieved
through instance transformation. Data represented by ontology instances has
to be transformed either by the sender or transparently by a third party in the
format required by the receiver, i.e., instances expressed in the target
ontology.

In order to accommodate such a mediation scenario, the alignments
generated by using the techniques described in Section 4 have to be
processed by an engine able to perform instance transformation. If the
alignments are expressed in an abstract form, e.g., using AML, an extra step
has to be performed: the correspondences in the alignment must be
expressed in a concrete ontology specification language which can be
interpreted.

6. Ontology Alignments 201

Figure 6-9. Run time Data Mediator Usage Scenario (from (Mocan and Cimpian, 2007)).

Figure 6-9 shows how such an instance transformation engine (the Data
Mediation Run-Time Component in WSMX) can be deployed and used in
various scenarios. A straightforward way is to integrate it in an Information
System (in this case WSMX) which needs mediation support in order to
facilitate the exchange of heterogeneous data.

Another possibility is to encapsulate this engine in a (Semantic) Web
service and to allow external calls having as inputs the source instances and
optionally the alignments to be applied. As output, the corresponding target
instances are returned.

Additionally, such an engine can be used for testing the correctness of the
alignments been produced, either by using it as a test module in the design-
time matching tool (see the WSMT MUnit) or by providing a Web interface
that would allow domain experts to remotely send source instances to be
transformed in target instances.

7. SOFTWARE AND TOOLS

Most of the work on general organisation of alignments is tied to some
kind of application, e.g., C-OWL for peer-to-peer applications, WSMX for
Web services, Edutella for emerging semantics. There are, however, a few
systems which are autonomous enough for being used as independent
alignment management support.

Model management has been promoted in databases for dealing with data
integration in a generic way. It offers a high-level view to the operations

202 Chapter 6

applied to databases and their relations. Rondo5 is such a system (Melnik et
al., 2002). It offers operators for generating the alignments, composing them
and applying them as data transformation. It is currently a standalone
program with no editing functions.

MAFRA6 (Mädche et al., 2002) proposes an architecture for dealing with
“semantic bridges” that offers many functions such as creation,
manipulation, storing and processing such bridges. MAFRA has
transformations associated with bridges: it does not record alignments in a
non processable format. MAFRA does not offer editing or sharing
alignments.

Protégé is an ontology edition environment (see Chapter 3 of this book)
that offers design time support for matching. In particular it features Prompt7
(Noy and Musen, 2003), an environment that provides some matching
methods and alignment visualisation. Since alignments are expressed in an
ontology, they can be stored and shared through the Protégé server mode.
Prompt can be extended through a plug-in mechanism.

Foam8 (Ehrig, 2007) is a framework in which matching algorithms can be
integrated. It mostly offers matching and processor generator. It does not
offer on-line services nor alignment editing, but is available as a Protégé
plug in and is integrated in the KAON2 ontology management environment.

COMA++ is another standalone (schema) matching workbench that
allows integrating and composing matching algorithms. It supports
matching, evaluating, editing, storing and processing alignments.

The Alignment Server, associated with the Alignment API9
(Euzenat, 2004), offers matching ontologies, manipulating, storing and
sharing alignments as well as processor generation. It can be accessed by
clients through API, Web services, agent communication languages ot
HTTP. It does not support editing.

WSMT10, which has been taken as example within these pages is a design
time alignment creator and editor. It manipulates the AML format and can
generate WSML rules. It also works as a standalone system.

The NeOn11 project ambitions to produce a toolkit for ontology
management which features run time and design time ontology alignment
support.

5 http://infolab.stanford.edu/~modman/rondo/
6 http://mafra-toolkit.sourceforge.net
7 http://protege.stanford.edu/plugins/prompt/prompt.html
8 http://www.aifb.uni-karlsruhe.de/WBS/meh/foam/
9 http://alignapi.gforge.inria.fr
10 http://wsmt.sourceforge.net
11 http://www.neon-project.org

6. Ontology Alignments 203

8. CONCLUSIONS

Applications using ontologies face the problem of ontology heterogeneity
whenever they want to communicate with each others or evolve. Hence,
ontology management must take ontology heterogeneity into account.
Dealing with ontology heterogeneity involves finding the alignments, or sets
of correspondences, existing between ontology entities and using them for
reconciling the ontologies.

Because, this problem occurs in many applications and is solved in many
different ways, it is better dealt with in a general way. This involves
managing alignments together with ontologies.

We have presented alignment management through the lifecycle of
alignments and the associated support functions: creating, selecting, editing,
maintaining, sharing and processing alignments. We have presented a few
systems which implement part of this alignment support and in particular the
notion of alignment server which can be used for storing and sharing
alignment at both run time and design time.

Alignment management is not as advanced as ontology management and
much remains to be developed for fully supporting and sharing alignments
on a wide scale. Challenges for alignment management include adoption
challenges and research problems. The important challenge is to have a
natural integration of alignment management with most of the ontology
engineering and ontology management systems. If alignment sharing and
management is to become a reality, then there should not be one proprietary
format with each tool that cannot be handled by other tools. Another
challenge is the easy finding of available alignments. For this purpose,
proper alignment metadata and Web-wide search support have to be set up.

There remains difficult research problems in the domain of alignment
management such as:

• The identification of duplicate alignments or evolutions from a particular
alignment;

• Aggregating, composing and reasoning usefully with a massive number
of alignments;

The design of ever better user interaction systems for both interacting
with matching systems and editing alignments.

204 Chapter 6

ADDITIONAL READING

The topic of alignment management is relatively new so there is no
specifically dedicated publications. A recent extensive reference on ontology
matching is (Euzenat and Shvaiko, 2007). ontologymatching.org is a Web
site collecting information about ontology matching.

ACKNOWLEDGEMENTS

This work has been partly supported by the European network of
excellence Knowledge Web (IST-2004-507482). The first author has also
been supported by the European integrated project NeOn (IST-2005-027595)
and the RNTL project WebContent.

The first author thanks Pavel Shvaiko for many fruitful discussions
related to this chapter.

REFERENCES

Christoph Bussler, Dieter Fensel, and Alexander Mädche. A conceptual architecture for
Semantic Web enabled Web services. ACM SIGMOD Record, 31(4):24–29, 2002.

Oliver Duschka and Michael Genesereth. Infomaster - an information integration tool. In
Proceedings of the International Workshop on Intelligent Information Integration,
Freiburg, Germany, 1997.

Marc Ehrig. Ontology Alignment: Bridging the Semantic Gap. Semantic Web and Beyond:
Computing for Human Experience. Springer, New-York (NY US), 2007.

Jérôme Euzenat and Petko Valtchev. Similarity-based ontology alignment in OWL-Lite. In
Proceedings of 16th European Conference on Artificial Intelligence (ECAI), Valencia
(ES), pages 333–337, 2004.

Jérôme Euzenat. Alignment infrastructure for ontology mediation and other applications. In
Proceedings of the 1st ICSOC International Workshop on Mediation in Semantic Web
Services, pages 81–95, Amsterdam, Netherlands, December 2005

Jérôme Euzenat. An API for ontology alignment. In Proceedings of the 3rd International
Semantic Web Conference (ISWC-2004), pages 698–712, Hiroshima, Japan, 2004

Jérôme Euzenat and Pavel Shvaiko. Ontology matching. Springer Verlag, Berlin, 2007
Michael Genesereth, Arthur Keller, and Oliver Duschka. Infomaster: An Information

integration system. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, Tucson, 1997.

Ningsheng Jian, Wei Hu, Gong Cheng, and Yuzhong Qu. Falcon-AO: Aligning ontologies
with Falcon. In Proceedings of K-CAP Workshop on Integrating Ontologies, pages 87–93,
Banff, CA, 2005.

Yannis Kalfoglou and Marco Schorlemmer. Ontology mapping: the state of the art. The
Knowledge Engineering Review, 18(1):1–31, 2003

Mike Kerrigan, Adrian Mocan, Martin Tanler, Dieter Fensel: The Web Service Modeling
Toolkit - An Integrated Development Environment for Semantic Web Services. In

6. Ontology Alignments 205

Proceedings of the 4th European Semantic Web Conference (ESWC), System Description
Track, June 2007, Innsbruck, Austria.

Loredana Laera, Ian Blacoe, Valentina Tamma, Terry Payne, Jérôme Euzenat, and Trevor
Bench-Capon. Argumentation over Ontology Correspondences in MAS. In Proceedings of
the 6th International conference on Autonomous Agents and Multiagent Systems
(AAMAS), Honolulu , USA, 2007

Holger Lausen, Jos de Bruijn, Axel Polleres, and Dieter Fensel: WSML — A Language
Framework for Semantic Web Services. W3C Workshop on Rule Languages for
Interoperability, April 2005

Aexander Mädche, Boris Motik, Nuno Silva, and Raphael Volz: MAFRA — A Mapping
Framework for Distributed Ontologies. In Proceedings of the 13th European Conference
on Knowledge Engineering and Knowledge Management (EKAW-2002), pages 235–250,
Siguenza, Spain, September 2002.

Sergey Melnik, Erhard Rahm, and Philip Bernstein. Rondo: A programming platform for
model management. In Proceedings of the 22nd International Conference on Management
of Data (SIGMOD), pages 193–204, San Diego (CA US), 2003

Adrian Mocan and Emilia Cimpian: Mapping creation using a view based approach. In
Proceedings of the 1st International Workshop on Mediation in Semantic Web Services
(Mediate-2005), volume 168, pages 97–112, Amsterdam, The Netherlands, December
2005.

Adrian Mocan, Matthew Moran, Emilia Cimpian, and Michal Zaremba. Filling the Gap -
Extending Service Oriented Architectures with Semantics. In Proceedings of the IEEE
International Conference on e-Business Engineering (ICEBE-2006), pages 594–601,
Shanghai, China, October 2006.

Adrian Mocan, Emilia Cimpian, and Mike Kerrigan: Formal Model for Ontology Mapping
Creation. In Proceedings of the 5th International Semantic Web Conference (ISWC-2006),
pages 459–472, Athens, Georgia, USA, November 2006.

Natalia F. Noy and Mark A. Musen: The PROMPT Suite: Interactive Tools for Ontology
Merging And Mapping. International Journal of Human-Computer Studies, 6(59):983–
1024, 2003.

Raúl Palma, Peter Haase, Oyster: Sharing and re-using ontologies in a peer-to-peer
community. In Proceedings of the 4th International Semantic Web Conference, pages
1059–1062, Galway, Ireland, 2005

Erhard Rahm and Philip Bernstein. A survey of approaches to automatic schema matching.
The VLDB Journal, 10(4):334–350, 2001

François Scharffe and Jos de Bruijn: A language to specify mappings between ontologies. In
Proceedings of the IEEE Conference on Internet-Based Systems SITIS6, Yaounde,
Cameroon, December 2005.

François Scharffe: Dynamerge: A Merging Algorithm for Structured Data Integration on the
Web. In Proceeedings of the DASFAA 2007 International Workshop on Scalable Web
Information Integration and Service (SWIIS 2007), 2007.

Pavel Shvaiko, Fausto Giunchiglia, Paulo Pinheiro da Silva, and Deborah McGuinness. Web
explanations for semantic heterogeneity discovery. In Proceedings of the 2nd European
Semantic Web Conference (ESWC), pages 303–317, Hersounisous, Greece, May 2005

Jie Tang, Juanzi Li, Bangyong Liang, Xiaotong Huang, Yi Li, and Kehong Wang. Using
Bayesian decision for ontology mapping. Journal of Web Semantics, 4(1):243–262, 2006

Willem Robert van Hage, Sophia Katrenko, Guus Schreiber. A Method to Combine
Linguistic Ontology-Mapping Techniques. In Proceedings of the 4th International
Semantic Web Conference (ISWC-2005), pages 732–744, Galway, Ireland, 2005

206 Chapter 6

Holger Wache, Thomas Voegele, Ubbo Visser, Heiner Stuckenschmidt, Gerhard Schuster,

Holger Neumann, and Sebastian Hübner. Ontology-based integration of information — a
survey of existing approaches. In Proceedings of the IJCAI Workshop on Ontologies and
Information Sharing, pages 108–117, Seattle, USA, 2001

Gio Wiederhold. Mediators in the architecture of future information systems. IEEE Computer,
25(3), 1992.

Chapter 7

THE BUSINESS VIEW: ONTOLOGY
ENGINEERING COSTS

Elena Simperl1 and York Sure2
1Digital Enterprise Research Institute (DERI), University of Innsbruck, Technikerstrasse 21a,
A-6020 Innsbruck, Austria, elena.simperl@deri.at; 2SAP Research, Vincenz-Priessnitz-Str. 1,
D-76131 Karlsruhe, Germany, york.sure@sap.com

Abstract: A core requirement for the take-up of ontology-driven technologies at industry
level is the availability of proved and tested methods which allow an efficient
engineering of high-quality ontologies, be that by reuse, manual building or
automatic knowledge acquisition methods. This includes in equal measure
feasible technological support, which is provided by the methodologies,
methods and tools emerged in the last decades in the field of ontology
management, and the economics of ontology engineering projects, in
particular issues of cost effectiveness and profitability. This chapter presents
and discusses approaches for reliably assessing the costs of building ontologies
and the usage of cost-related information to quantifiably support a wide range
of decisions arising during the lifecycle of an ontology. We account for the
similarities and differences between software and ontology engineering in
order to establish the appropriateness of applying methods, which have a long-
standing tradition in this adjacent engineering field, to ontologies. Building
upon the results of this analysis we introduce ONTOCOM as the first
parametric cost model for ontologies and discuss means to improve its
accuracy and extend its applicability for a wide range of ontology engineering
projects at public and corporate level.

Keywords: business view; cost estimation; ontology costs; ontology engineering;
parametric method

1. INTRODUCTION

Though ontologies and associated ontology management tools have
become increasingly popular in the last decades, the dissemination of
ontologies and ontology-based applications as envisioned by the Semantic

208 Chapter 7

Web community requires fine-grained methodologies which are able to deal
with both technical and economic challenges of ontology engineering. In
order for ontologies to be built and deployed at a large scale and with
sufficient efficiency and effectiveness one needs not only technologies and
tools to assist the development process, but also proved and tested means to
control the overall engineering process. A wide range of ontology
engineering methodologies have emerged in the Semantic Web community.
Apart from minor differences in the level of detail adopted for the
description of the process stages they define ontology engineering as an
iterative process, which shows major similarities to the neighbored research
field of software engineering. However existing methodologies do not cover
a crucial aspect of the engineering process, which has gained significant
attention in adjacent engineering areas because of its importance in real-
world business contexts: the costs estimation using pre-defined cost models
(Hepp,2007).

In order to precisely estimate the costs related to the ontology
engineering process, there is a need for empirically tested cost models which
exploit the results already achieved with respect to this issue in related
engineering fields. At the same time a cost model for ontologies should take
into account the critical factors and particularities of the ontology
engineering process. With ONTOCOM we present the first existing
approach in this new emerging field of ontology engineering. Estimating
costs for ontology engineering is similar to estimating costs for software
engineering as it requires the consideration of economic aspects for generic
products and the processes they result of. Therefore, our approach largely
benefits from the experiences made in estimating costs for software
engineering. By using expert interviews we identified the most relevant cost
drivers for a wide class of ontology engineering projects. In a large user
study we acquired relevant data from a large number of already existing
ontology engineering projects and calibrated the model with promising
results. Combing the two we were able to identify dimensions for further
research and development in order to create a methodology for the creation
of any kind of cost estimation model for ontologies, independently of the
ontology lifecycle or the organizational setting it might be employed.

The outline of this chapter is as follows. We start by motivating the need
for cost-related information in ontology engineering and elaborating on the
most relevant methods for cost estimation which are likely to be suited for
this purpose in Section 2. In Section 3 we present the ONTOCOM model
based on the previously identified most promising methods for cost
estimation. We show the various parts of ONTOCOM such as a parametric
formula to estimate costs and relevant cost drivers. We show how the
generic ONTOCOM model can be broken down for concrete industrial

7. The Business View: Ontology Engineering Costs 209

projects by instantiation of the various parameters and analyze the critical
issues which are required in order to design a methodology for the design of
flexible, customized cost models for ontologies which best fit specific
organizational and technological constraints. Next, Section 4 gives an
outline of the software tool support which can ease the usage of ONTOCOM
or other cost models by ontology engineers. Section 5 gives an overview of
related work, and finally Section 6 summarizes the conclusions and lessons
learned from our research and the planned future work.

2. COST ESTIMATION FOR ONTOLOGY
ENGINEERING

Cost estimation can be defined as the art of predetermining the lowest
realistic price of an item or activity which assures a normal profit.
Independently of the sector in which it is performed, cost estimation
produces probabilistic assessments of the expected effort (usually expressed
in person months rather than monetary units) and/or the elapsed time.
Concretely, cost estimation methods generate predictions which indicate at
different levels of accuracy the most likely values, as well as upper and
lower bounds on the values of the aforementioned parameters. In the case of
Ontology Engineering cost estimation aims at predicting the costs related to
activities performed during the lifecycle of an ontology.

Estimates of effort and duration are required throughout the entire
lifecycle of a product, be that software, ontologies or any other type of
merchandise. In an early stage of a project, they are essential for determining
the feasibility of the project, or for performing cost-benefit analysis to
choose among alternative methods to achieve the project goals. The
inaccuracy of such estimates is, however, relatively high, because of the lack
of detailed knowledge on the project or its planned outcomes characteristic
for this stage. Nevertheless, initial estimates can be updated once the project
evolves. They are used for controlling purposes, as an instrument to check
the current status of a project against its final objectives.

Compared to other engineering disciplines, the goal of estimating the
costs of an ontology is related to a series of challenges, which can be traced
back to the particularities of ontology engineering projects and to the current
state of the art in the field. First, and by contrast to other industry sectors
which design a new product and produce it multiple times, ontology
engineering is about building new ontologies, using different methods and
tools. This problem also applies for software. However, in the latter case it is
alleviated by

210 Chapter 7

• a deeper knowledge on typical cost drivers resulting from the long-

standing tradition of the IT industry,
• the wide range of cost estimation methods which can be applied

complementarily to overcome limitations at individual method level, and
• the comparatively high amounts of historical project data available to

adjust and improve them.

This should not mean that cost estimation for ontologies can not be
performed at a feasible level of accuracy. Due to the inherent similarities
between software and ontologies, many of the achievements, experiences
and lessons learned for the former are likely to be applicable for the latter,
and hence form a viable basis to start developing ontology-specific
prediction methods. However, ontology engineering is a comparatively
young field of research and development whose economic aspects require
additional investigation. In the following we study possible approaches to
the question of ontology development costs before introducing the
ONTOCOM method, as a first attempt to cope with this problem

2.1.1 Cost estimation methods

Estimating costs for engineering processes can be performed according to
several methods. Due to their limitations with respect to certain classes of
situations these methods are often used in conjunction during the estimation
phase.

• Expert judgment/Delphi method The Delphi Method is based on a
structured process for collecting and distilling knowledge from a group
of human experts by means of a series of questionnaires interspersed
with controlled opinion feedback. The involvement of human experts
using their past project experiences is a major advantage of the
approach. Its most extensive critique point is related to the difficulties to
explicitly state the decision criteria used by the contributing experts and
to its inherent dependency of the availability of experts to carry on the
process.

• Analogy method The main idea of this method is the extrapolation of
available data from similar projects to estimate the costs of the proposed
project. The method is suitable in situations where empirical data from
previous project is available and trustworthy, and depends on the
accuracy in establishing real differences between completed and current
projects.

• Decomposition method This involves generating a work breakdown
structure, i.e. breaking a product into smaller components or a project
into activities and tasks in order to produce a lower-level, more detailed

7. The Business View: Ontology Engineering Costs 211

description of the product/project at hand, which in turn allows more
accurate cost estimates. The total costs are calculated as average values,
possibly adjusted on the basis of the complexity of the components/tasks
considered. The successful application of the method depends of the
availability of necessary information related to the work breakdown
structure.

• Parametric/algorithmic method This method involves the usage of
mathematical equations based on research and historical data from
previous projects. The method analyzes main cost drivers of a specific
class of projects and their dependencies and uses statistical techniques to
refine and customize the corresponding formulas. As in the case of the
analogy method the generation of a proved and tested cost model using
the parametric method is directly related to the availability of reliable
and relevant data to be used in calibrating the initial core model.

Orthogonally to the aforementioned methods we mention two core
approaches to cost estimation (cf. Table 7-1).

• Bottom-up estimation This methodology involves identifying and
estimating costs of individual project components separately and
subsequently summing up the outcomes to produce an estimation for the
overall project.

• Top-down estimation In contrast to the bottom-up approach the top-
down method relies on overall project parameters. For this purpose, the
project is partitioned into lower-level components and lifecycle phases
beginning at the highest level. The approach produces are total project
estimates, in which individual process tasks or product components are
responsible for a proportion of the total costs.

The decomposition method is based on a bottom-up approach. Estimation
by expert judgment, analogy or parametric equations can be carried in a top-
down or a bottom-up fashion, also depending of the stage of the project in
which the estimates need to calculated. Top-down estimation is more
applicable to early cost estimates when only global properties are known, but
it can be less accurate due to the less focus on lower-level parameters and
technical challenges — usually predictable later in the process lifecycle, at
most. The bottom-up approach produces results of higher-quality, provided a
realistic work breakdown structure and means to estimate the costs of the
lower-level units the product/project has been decomposed into.

In addition to effort estimates in terms of person months several cost
models also provide means to estimate the duration of projects, whilst the
two values are usually assumed to depend of each other according to a
specific mathematical function. The most prominent examples of duration

212 Chapter 7

estimation methods are parametric (e.g. the Putnam model (Putnam, 2003) or
the COCOMO model (Boehm, 1981) in software engineering).

Table 7-1. Methods and approaches to cost estimation
 Bottom-up estimation Top-down estimation
Expert judgment
method

Experts estimate the costs of low-
level components or activities.

Experts estimate the total
costs of a product or a
project

Analogy method Costs are calculated using analogies
between low-level components or
activities

Costs are estimated using a
global similarity function
for products or projects

Decomposition
method

Costs are calculated as an average
sum of the costs of lower-level
units, whose development effort are
known in advance

Parametric method Costs are calculated using a statistic
model which predicts the costs of
lower-level units on the basis of
historical data about the costs of
developing such units.

Costs are calculated using
a statistic model which is
calibrated using historical
data about, and predicts the
current value of the total
development costs

2.1.2 Applicability to ontology engineering

The applicability of the mentioned cost estimation methods to ontology
engineering depends of course on the process- and product-driven
characteristics of ontology engineering. In the following we examine the
advantages and disadvantages of each of these approaches given these
characteristics and the current state of the art in the field:

• Expert judgment/Delphi method The expert judgment method seems
to be appropriate for our goals since large amount of expert knowledge
with respect to ontologies is already available in the Semantic Web
community, while the costs of the related engineering efforts are not.
Experts’ opinion on this topic can be used to compliment the results of
other estimation methods.

• Analogy method The analogy method requires knowledge about the
features of an ontology, or of an ontology development process, which
are relevant for cost estimation purposes. Further on it assumes that an
accurate comparison function for ontologies is defined, and that we are
aware of cost information from previous projects. While several
similarity measures for ontologies have already been proposed in the
Semantic Web community, no case studies on ontology costs are
currently available. There is a need to perform an in-depth analysis of

7. The Business View: Ontology Engineering Costs 213

the cost factors relevant for ontology engineering projects, as a basis for
the definition of such an analogy function and its customization in
accordance to previous experiences.

• Decomposition method This method implies the availability of cost
information with respect to single low-level engineering tasks, such as
costs involved in the conceptualization of single concepts or in the
instantiation of the ontology. Due to the lack of available information the
decomposition method can not be applied yet to ontology engineering.

• Parametric/algorithmic method Apart from the lack of costs-related
information which should be used to calibrate cost estimation formula
for ontologies, the analysis of the main cost drivers affecting the
ontology engineering process can be performed on the basis of existing
case studies on ontology building, representing an important step toward
the elaboration of a predictable cost estimation strategy for ontology
engineering processes. The resulting parametric cost model has to be
constantly refined and customized when cost information becomes
available. Nevertheless the definition of a fixed spectrum of cost factors
is important for a controlled collection of existing real-world project
data, a task which is fundamental for the subsequent model calibration.
This would also be useful for the design and customization of alternative
prediction strategies, such as the aforementioned analogy approach.

Given the fact that cost estimation has been marginally explored in the
Semantic Web community so far, and that little is known about the
underlying cost factors, a bottom-up approach to the previously introduced
methods is currently not practicable, though it would produce more accurate
results. In turn, expert judgment, analogy and parametric cost estimates
could be obtained in a top-down fashion, if the corresponding methods are
clearly defined and customized in the context of ontology engineering. An
overview of the results of this feasibility study is depicted in Table 7-2. Due
to the incompleteness of the information related to cost issues, a combination
of the three is likely to overcome certain limitations of single methods.

Table 7-2. Cost estimation methods and approaches currently applicable to Ontology
Engineering

 Bottom-up estimation Top-down estimation
Expert judgment
method

Analogy method
Decomposition method
Parametric method

Duration estimates can be defined analogously for parametric models.
For this purpose one can assume a similar function defining the correlation

214 Chapter 7

between staff efforts and time within ontology engineering projects as in
other engineering disciplines. This function needs to be customized to the
particularities of ontology engineering projects.

In the following we introduce the ontology cost model ONTOCOM,
which is a first attempt to apply the parametric method to ontology
engineering, and discuss ways to improve its prediction quality.

3. THE ONTOLOGY COST MODEL ONTOCOM

ONTOCOM is a generic cost model for ontology engineering. The model
is generic in the sense that it assumes a sequential ontology lifecycle,
according to which an ontology is conceptualized, implemented and
evaluated, after an initial analysis of the requirements it should fulfill (see
below). By contrast ONTOCOM does not consider alternative engineering
strategies such as rapid prototyping or agile methods, which are based on
different lifecycles. This limitation is issued in Section 3.5, which describes
among other things how the generic model could be customized to suit such
scenarios.

The cost estimation model is realized in three steps. First a top-down
work breakdown structure for ontology engineering processes is defined in
order to reduce the complexity of project budgetary planning and controlling
operations down to more manageable units (Boehm, 1981). The associated
costs are then elaborated using the parametric method. The result of the
second step is a statistical prediction model (i.e. a parameterized
mathematical formula). Its parameters are given start values in pre-defined
intervals, but need to be calibrated on the basis of previous project data. This
empirical information complemented by expert estimations is used to
evaluate and revise the predictions of the initial a-priori model, thus creating
a validated a-posteriori model.

3.1 The work breakdown structure

The top-level partitioning of a generic ontology engineering process can
be realized by taking into account available process-driven methodologies in
this field (Gomez et al, 2004, Sure et al, 2006). According to them ontology
building consists of the following core steps (cf. Figure 7-1):

1. Requirements Analysis. The engineering team consisting of domain
experts and ontology engineers performs a deep analysis of the project
setting with respect to a set of predefined requirements. This step might
also include knowledge acquisition activities in terms of the re-usage of

7. The Business View: Ontology Engineering Costs 215

existing ontological sources or by extracting domain information from
text corpora, databases etc. If such techniques are being used to aid the
engineering process, the resulting ontologies are to be subsequently
customized to the application setting in the conceptualization
/implementation phases. The result of this step is an ontology
requirements specification document (Sure et al, 2006). In particular this
contains a set of competency questions describing the domain to be
modeled by the prospected ontology, as well as information about its use
cases, the expected size, the information sources used, the process
participants and the engineering methodology.

2. Conceptualization. The application domain is modeled in terms of
ontological primitives, e. g. concepts, relations, axioms.

3. Implementation. The conceptual model is implemented in a (formal)
representation language, whose expressivity is appropriate for the
richness of the conceptualization. If required reused ontologies and those
generated from other information sources are translated to the target
representation language and integrated to the final context.

4. Evaluation. The ontology is evaluated against the set of competency
questions. The evaluation may be performed automatically, if the
competency questions are represented formally, or semi-automatically,
using specific heuristics or human judgment. The result of the evaluation
is reflected in a set of modifications/refinements at the requirements,
conceptualization or implementation level

Figure 7-1. Ontology Engineering Process

Depending on the ontology lifecycle underlying the process-driven
methodology, the aforementioned four steps are to be seen as a sequential
workflow or as parallel activities. Methontology (Gomez et al, 2004), which
applies prototypical engineering principles, considers knowledge acquisition,
evaluation and documentation as being complementary support activities
performed in parallel to the main development process. Other

216 Chapter 7

methodologies, usually following a classical waterfall model, consider these
support activities as part of a sequential engineering process. The OTK-
Methodology (Sure et al, 2002) additionally introduces an initial feasibility
study in order to assess the risks associated with an ontology building
attempt. Other optional steps are ontology population (also called
instantiation) and ontology evolution and maintenance. The former deals
with the alignment of concrete application data to the implemented ontology.
The latter relate to modifications of the ontology performed according to
new user requirements, updates of the reused sources or changes in the
modeled domain. Further on, likewise related engineering disciplines,
reusing existing knowledge sources — in particular ontologies — is a central
topic of ontology development. In terms of the process model introduced
above, ontology reuse is considered a knowledge acquisition task.

The parametric method integrates the efforts associated with each
component of this work breakdown structure to a mathematical formula as
described below.

3.2 The parametric equation

ONTOCOM calculates the necessary person-months effort using the
following equation:

PM = A * Sizeα * Π CDi (1)

According to the parametric method the total development efforts are
associated with cost drivers specific for the ontology engineering process
and its main activities. Experiences in related engineering areas (Boehm,
1981; Korotkiy, 2005) let us assume that the most significant factor is the
size of the ontology (in kilo entities) involved in the corresponding process
or process phase. In Equation 1 the parameter Size corresponds to the size of
the ontology i.e. the number of primitives which are expected to result from
the conceptualization phase (including fragments built by reuse or other
knowledge acquisition methods).

The possibility of a non-linear behavior of the model with respect to the
size of the ontology is covered by parameter α. The constant A represents a
baseline multiplicative calibration constant in person months, i.e. costs
which occur “if everything is normal” when building an ontology with 1000
ontological primitives. The cost drivers CDi have a rating level (from Very
low to Very high) that expresses their impact on the development effort. For
the purpose of a quantitative analysis each rating level of each cost driver is
associated to a weight (effort multipliers EMij). The productivity range PRi
of a cost driver is an indicator for the relative importance of a cost driver for

7. The Business View: Ontology Engineering Costs 217

the overall estimation (Boehm, 1981). It is calculated as the ratio between
the highest and the lowest effort multiplier of a cost driver:

PRi = max(EMij) / min(EMij) (2)

3.3 The ONTOCOM cost drivers

The core of the parametric method to estimate costs are the cost drivers,
which are associated to features of the product or project at hand, which are
likely to have an impact on the total development efforts. The relevance and
impact of each cost driver to the overall estimate is subject to continuous
adjustments based on the analysis of existing project data.

In order to generate a preliminary list of potential cost drivers for
ontology engineering, and implicitly for the ONTOCOM model, we
performed a comprehensive study of the literature in the field, conducted and
analyzed various case studies, and interviewed several experts.

The resulting cost drivers can be roughly divided into three categories:

1. Product-related cost drivers account for the impact of the characteristics
of the product to be engineered (i.e. the ontology) on the overall costs.
The most important ontology features with this respect are the
complexity of the modeled domain, the complexity of the conceptual
model and its implementation, the complexity of the instantiation and the
complexity of the evaluation procedure.

2. Personnel-related cost drivers emphasize the role of the team experience,
ability and continuity with respect to the effort invested in the
engineering process. In this category we mention the capability of
ontology engineering and domain experts, their experience in developing
ontologies or in working with ontology languages and tools as well as the
personnel turnover.

3. Process-related cost drivers relate to characteristics of the global ontology
engineering process and their impact on the total costs. The current version
of ONTOCOM uses two project-related cost drivers: the availability of
tools and technology to speed-up certain phases of an ontology
development process and the multi-site development to mirror the usage of
the communication support tools in a location-distributed team.

For each cost driver we specified in detail the decision criteria which are
relevant for the model user in order for him to determine the concrete rating
of the driver in a particular situation. For example for the cost driver
CCPLX — accounting for costs produced by a particularly complex

218 Chapter 7

conceptualization — we pre-defined the meaning of the rating levels as
depicted in Table 7-3. The appropriate rating should be selected during the
cost estimation procedure and used as a multiplier in Equation 1. The
concrete values of the effort multipliers have been determined during the
calibration of the model, which is described in (Paslaru et al, 2006). Some of
the values are depicted in Table 7-4 for exemplification purposes.

Table 7-3. The cost driver CCPLX (complexity of the conceptualization), its rating levels and
associated effort multipliers.

Rating level Effort multiplier Description

Very low 0.28 The conceptual model is a concept list

Low 0.64 The conceptual model is a taxonomy. A high
number of patterns supporting the creation of the
taxonomy are available. No special modeling
constraints are imposed through application
requirements.

Nominal 1.0 The model contains a taxonomical structure and
domain properties. Again, modeling patterns are
available, while the application setting imposes
some simple constraints which produce additional
modeling overload.

High 1.36 The model contains in addition to the previous
case axioms. By contrast the engineering team can
not resort to a feasible number of modeling
patterns to ease the conceptualization task. In the
same time, the number of application-driven
constrains increases.

Very high 1.72 The conceptual model is an axiomatized ontology
containing both schema and instance data. In turn,
there are few to no modeling patterns to support
the conceptualization task, while the number of
application-driven constrains is considerably high.

The decision criteria associated with a cost driver are typically more
complex than in the previous example and might be sub-divided into further
sub-categories, whose impact is aggregated to the final effort multiplier of
the corresponding cost driver by means of normalized weights.

3.4 Using the ONTOCOM model

Starting from a typical ontology-building scenario, in which a domain
ontology is created from scratch by the engineering team, we simulate the
cost estimation process according to the parametric method underlying
ONTOCOM. Given the top-down nature of our approach this estimation can

7. The Business View: Ontology Engineering Costs 219

be realized in the early phases of a project. In accordance to the process
model introduced above the prediction of the arising costs can be performed
during the feasibility study or, more reliably, during the requirements
analysis. Many of the input parameters required to exercise the cost
estimation are expected to be accurately approximated during this phase: the
expected size of the ontology, the engineering team, the tools to be used, the
implementation language etc.

The first step of the cost estimation is the specification of the size of the
ontology to be built, expressed in thousands of ontological primitives
(concepts, relations, axioms and instances): if we consider an ontology with
1000 concepts, 200 relations (including is-a) and 100 axioms, the size
parameter of the estimation formula will be calculated as follows:

Size = 1000 + 200 + 100 / 1000 = 1, 3 (3)

The next step is the specification of the cost driver ratings corresponding
to the information available at this point (i.e. without reuse and maintenance
factors, since the ontology is built manually from scratch). Depending on
their impact on the overall development effort, if a particular activity
increases the nominal efforts, then it should be rated with values such as
High and Very high. Otherwise, if it causes a decrease of the nominal costs,
then it would be rated with values such as Low and Very low. Cost drivers
which are not relevant for a particular scenario, or are perceived to have a
nominal impact on the overall estimate, should be rated with the nominal
value 1, which does not influence the result of the prediction equation.

Table 7-4. Cost drivers and their concrete values in a project
Cost driver Effort Value Cost drivers Effort Value

Product-related drivers Personnel-related drivers
DCPLX High 1.26 OCAP Low 1.11
CCPLX Nominal 1 DCAP High 0.93
ICPLX Low 1.15 OEXP Low 1.11
DATA Nominal 1 DEXP Very high 0.89
REUSE Nominal 1 LEXP Nominal 1
DOCU Nominal 1 TEXP Nominal 1
OE Nominal 1 PCON Very High 1.2

Process-related drivers
TOOL Very low 1.7 SITE Nominal 1

Assuming that the ratings of the cost drivers are those depicted in Table

7-4 these ratings are replaced by numerical values. The value of the DCPLX
cost driver was computed as an equally weighted, averaged sum of a high-
valued rating for the domain complexity, a nominal rating for the
requirements complexity and a high effort multiplier for the information

220 Chapter 7

sources complexity (for details of other rating values see (Simperl et al.,
2006)). According to the formula 1 the development effort of 11.44PM
would be calculated as follows:

PM = 2.92 * 1. 3 * (1.26 * 1. 15 *
1. 11 * 0. 93 * 1. 11 * 0.89 * 1.2 * 1.7) (4)

The constant A has been set to 2.92 after the calibration of the model, while
the economies of scale are so far not taken into consideration.

In order to increase the quality of the produced predictions in a particular
project or organizational setting the generic model should however be
subject to further calibrations or even extensions and revisions based on
local data definitions. These issues are elaborated in the next section.

3.5 Applying the ONTOCOM model to arbitrary
ontology engineering projects

ONTOCOM provides a generic model for predicting the costs arising in
ontology engineering projects. In order to increase its real-world
applicability it should be further extended and revised according to several
dimensions:

• Support for the entire ontology lifecycle. The model briefly introduced
in this chapter considers solely those projects in which ontologies are
built manually without reusing existing knowledge resources. Cost
drivers reflecting the impact of ontology reuse, or more generally
knowledge acquisition, on the overall costs should be defined in order to
cope with this limitation. A second aspect which is not addressed in the
presented model is its usage in the target application context. With this
respect one should extend the product- and process-related cost drivers
with support for integration (how much does it cost to integrate the built
ontology into its application system) and maintenance.

• Support for alternative ontology engineering methodologies. As
explained in Section 3.1 the generic ONTOCOM model assumes a
sequential ontology lifecycle which contains only the most important
management, development and support activities (Gómez-Pérez et al.,
2004). In case the model is applied to a different setting, the relevant
cost drivers are to be aligned (or even re-defined) to the new sub-phases
and activities, while the parametric equation needs to be adapted to the
new activity breakdown.

• Refinements of the parametric method. The current release of the
ONTOCOM model addresses two issues which are an integral part of

7. The Business View: Ontology Engineering Costs 221

the parametric method solely marginally. First, the model should further
investigate the need and determine an appropriate value for the
economies of scale parameter in Equation 1. This can be achieved in a
similar manner as in classical parametric models in the software
engineering field such as COCOMO. This popular model, as well as
other prominent approaches for software systems seems to agree upon a
value of around 1 for this parameter (Barker and Kemerer, 2003).
Second, the model needs to be extended with a means to estimate the
duration of an ontology engineering project in addition to the person
months efforts. In adjacent engineering disciplines it has been shown
that duration can be predicted in close relationship to development
efforts.

• Improvement of the prediction quality of the generic model. This can be
achieved in several ways, which are not necessarily specific to the field
of ontology engineering, but are related to the very nature of the
parametric method:
o Calibration with larger amounts of data. As the model is based on

statistical analysis (e.g. using multi-linear regression, Bayes analysis
or both, cf. (Paslaru et al, 2006)) its prediction quality is directly
proportional to the number of data points used for the calibration.

o Calibration with more accurate data. The quality of the obtained
predictions equally depends on the quality of the collected historical
data and on its representativeness for the present project. In this
context calibrating the model using local data is likely to produce
further improvements of the prediction quality.

o Accurate input parameters: A prediction model, no matter how
accurately calibrated, will not produce accurate values if the input
parameters employed in the parametric equation are inexact. As the
model is applied in an early stage of an ontology engineering
project, it is likely that some of the required input parameters are not
known in advance and need to be estimated by the engineering team.
The most prominent example in this category is the size of the
prospected ontology. In order to alleviate this problem, one could
apply group decision methods to allow a more precise estimation of
the size parameter. In addition, the analogy method could provide an
alternative instrument for calculating this value.

4. SOFTWARE AND TOOLS

Software tools are required for various types of tasks in the context of
cost estimation models, in particular ONTOCOM.

222 Chapter 7

On the one side the customization of a model to particular needs
(expressed in terms of historical project data describing these needs
implicitly through cost drivers) should be supported by tools for data
collection and calibration. Depending on the estimation method applied the
data collection can be systematically undertaken through face-to-face
interviews, or structured questionnaires in a variety of forms (from Excel to
Word documents and online tools). The calibration of the method requires
statistical tools to perform the regression or the Bayes analysis (Devnani-
Chulani, 1999). Figure 7-2 depicts a screenshot of the online questionnaire
used for data collection for the ONTOCOM model.1

Figure 7-2. Online questionnaire used for data collection in ONTOCOM

Once the model can be viably applied to a project environment there is a
need for tools which automatically calculate estimates using actual value
inputs provided by the user. In their simplest form such tools can be
specially designed Excel sheets or client applications with sophisticated user
interfaces. Figure 7-3 gives an example of a tool we developed for the usage
of the analogy method in ontology engineering.

1 The questionnaire is available at http://kompass.mi.fu-

berlin.de/phpESP/public/survey.php?name=ontocom2006.

7. The Business View: Ontology Engineering Costs 223

Figure 7-3. Tool for the usage of the analogy method

5. STATE OF THE ART AND RELATED WORK

Cost estimation methods have a long-standing tradition in more mature
engineering disciplines such as software engineering or industrial production
(Boehm, 1981, Kemerer, 1987, Putnam, 2003, Stewart, 1995). Although the
importance of cost issues is well-acknowledged in the community, as to the
best knowledge of the authors, no cost estimation model for ontology
engineering has been published so far. Analogue models for the development
of knowledge-based systems, e.g., (Felfernig, 2004) implicitly assume the
availability of the underlying conceptual structures. (Menzies, 1999)
provides a qualitative analysis of the costs and benefits of ontology usage in
application systems, but does not offer any model to estimate the efforts.
(Cohen et al, 1999) presents empirical results for quantifying ontology reuse.
(Korotkiy, 2005) adjusts the cost drivers defined in a cos estimation model
for Web applications with respect to the usage of ontologies. The cost
drivers, however, are not adapted to the requirements of ontology
engineering and no evaluation is provided.

6. SUMMARY AND CONCLUSIONS

Reliable methods for cost estimation are a fundamental requirement for a
wide-scale dissemination of ontologies in business contexts. However,

224 Chapter 7

though the importance of cost issues is well-recognized in the community,
no cost estimation model for ontology engineering is available so far.
Starting from existing cost estimation methods applied across various
engineering disciplines, we identify relevant cost drivers having a direct
impact on the effort invested in the main activities of the ontology lifecycle
and propose a parametric cost estimation model for ontologies based on the
results. We explain how this model can be used and adapted in order to suit a
wide range of ontology engineering projects at corporate level.

In the near future we intend to continue the data collection procedure in
order to improve the quality of the generic model and its customizations.
Much work needs to be done by many people, thus we see ONTOCOM as a
seed for an urgently needed field of research, the cost estimation for
ontologies. Any significant improvement in this field will substantially
facilitate the uptake of semantic technologies for industrial projects. A
second direction of research is related to the design and development of tools
which allow an appropriate usage of the model, be that in terms of user-
friendly applications for using the current model, or through alternative
methods for the estimation of critical input parameters such as the size of the
prospected ontology.

REFERENCES

Banker, R. D. and Kemerer, C. F., 1989, Scale economies in new software development.
IEEE Transactions of Software Engineering, 15(10):1199–1206.

Boehm, B. W., 1981, Software Engineering Economics. Prentice-Hall.
Cohen, P. R., Chaudhri, V. K., Pease, A. and Schrag, R., 1999 Does prior knowledge facilitate

the development of knowledge-based systems? In Proceedings of the AAAI/IAAI, pp. 221–
226.

Devnani-Chulani; S., 1999, Bayesian analysis of the software cost and quality models. PhD
thesis, Faculty of the Graduate School University of Southern California.

Felfernig, A., 2004, Effort estimation for knowledge-based configuration systems. In
Proceedings of the 16th International Conference of Software Engineering and Knowledge
Engineering SEKE04.

Gómez-Pérez, A., Fernández-Lopez, M. and Corcho, O., 2004, Ontological Engineering —
with Examples from the Areas of Knowledge Management, e-Commerce and the Semantic
Web. Springer Verlag.

Hepp, M., 2007, Possible ontologies: How reality constrains the development of relevant
ontologies, IEEE Internet Computing, 11:90-96.

IEEE Computer Society, 1996, IEEE Standard for Developing Software Life Cycle Processes.
IEEE Std 1074-1995.

Kemerer, C. F., 1987, An empirical validation of software cost estimation models.
Communications of the ACM, 30(5).

Korotkiy, M., 2005, On the effect of ontologies on Web application development effort. In
Proceedings of the Knowledge Engineering and Software Engineering Workshop.

Menzies, T., 1999, Cost benefits of ontologies. Intelligence, 10(3):26–32.

7. The Business View: Ontology Engineering Costs 225

Paslaru-Bontas Simperl, E., Tempich, C. and Sure, Y., 2006. ONTOCOM: A cost estimation

model for ontology engineering. In Proceedings of the International Semantic Web
Conference ISWC2006, Springer Verlag.

Putnam, L. H. and Myers, M. W., 2003. Five Core Metrics : the Intelligence Behind
Successful Software Management. Dorset House Publishing.

Stewart, R. D., Wyskida, R. M. and Johannes, J. D., 1995, Cost Estimator’s Reference
Manual.Wiley.

Sure, Y., Staab, S. and Studer, R., 2002, Methodology for development and employment of
ontology based knowledge management applications. SIGMOD Record, 31(4).

Sure, Y., Tempich, C. and Vrandecic, D., 2006, Ontology engineering methodologies. In
Semantic Web Technologies: Trends and Research in Ontology-based Systems. Wiley

Tempich, C., Pinto, H. S. and Staab, S., 2006, Ontology engineering revisited: an iterative
case study with diligent. In Proceedings of the 3rd European Semantic Web Conference
ESWC 2006, pp. 110–124, Springer Verlag.

IV. EXPERIENCES

Chapter 8

ONTOLOGY MANAGEMENT IN E-BANKING
APPLICATIONS
Integrating Third-Party Applications within an e-Banking
Infrastructure

José-Manuel López-Cobo1, Silvestre Losada1, Laurent Cicurel1, José Luis
Bas2, Sergio Bellido2, and Richard Benjamins3
1Intelligent Software Components S.A., C/ Pedro de Valdivia 10, 28006, Madrid, Spain;
2Bankinter, Paseo de la Castellana 29, 28046, Madrid, Spain; 3Telefónica Investigación y
Desarrollo SAU, Emilio Vargas 6, 28029, Madrid, Spain

Abstract: In this chapter we introduce how ontologies, semantic technologies in general,
and Semantic Web Services in particular boost productivity in software and
service development, by discovering new ways to extend the added value of
applications in that domain. Two different applications have been developed
between Bankinter, a Spanish bank with a strong innovation tendency and
iSOCO, a leading company in the development of applications based on
semantic technologies. We demonstrate the importance of semantic
technologies for commercial banking applications and share experiences in
working with ontologies and Semantic Web Services.

Keywords: mortgage application; ontology management; Semantic Web; Semantic Web
Services; stock brokering; WSMO

1. INTRODUCTION

The Internet represents a real revolution that is here to stay: Millions of
people access the Web to extract information, do some shopping, get
entertained or just learn. From its early stages, the Web has provided a
magnificent opportunity for anyone: persons, businesses or communities that
want worldwide exposure.

However, communication between machines has not been developed
deeply enough. The Internet currently does not allow for fluent

230 Chapter 8

communication between machines to do anything more but searching for
words, whereas they should be exchanging information about the
transactions they perform.

Overcoming, or at least lowering, existing barriers to a more efficient and
automatic human-machine communication is at the forefront of research and
development efforts. Although this may sound pretentious, we could be
talking about a second revolution of the information society, just like in the
past we knew the first and the second industrial revolutions caused by the
steam machine and chain production, respectively. Analogously, we could
be talking about the Internet for persons as the first revolution of the
information society and the Internet for machines as the second one.

Nevertheless, as it happened with the steam machine or chain production,
scientific innovations are useless if they are not reflected in economic
activity and society. On one hand, the Internet has a role in showing
information to the user. On the other hand, the most frequent commercial
activity on Internet is based on services, especially in information-intensive
sectors, maybe as providers, as intermediaries or transporters.

Given the online access that banks and financial institutions provide to
their customers and business partners, banks can adopt several strategies
regarding technology evolution. Orlikowski (1992) pointed out three
possible roles for technology. The first one assumes that technology is a
force external to the company with deterministic impacts on it. The second is
a “softer” determinant and considers some moderating role of the company
on this force. Finally, the third one sees technology as a product of shared
interpretations or interventions. This leads us to distinguish among three
types of banks:

• Technological leaders. Profile: medium-size banks that focus their
strategy on technology and consider the Internet as an opportunity to
improve their markets.

• Follower banks. Profile: big or medium size banks (there may be some
exceptions) that first considered the Internet like a threat. When the
market matured, they changed their strategy from a defensive position to
a competitive attitude towards those who were first leaders.

• Non believer banks. The third group of banks did not invest in Internet
because of their small size, strategy or other reasons. However, they are
a minority in terms of market share.

8. Ontology Management in E-Banking Applications 231

2. SEMANTIC WEB SERVICES FOR E-BANKING

Bankinter, one of Spain’s leaders in the first group has always been
aggressive in its online offerings and, consequently, is continuously looking
for improvements. As we will argue later, ontologies and semantic
technologies are among the most important opportunities for its strategy as
they can significantly improve the efficiency of the processes1 in a bank.
Processes in a bank can be classified in three categories:

• Inter-banking processes: These processes are created to exchange
documents and monetary entries (cheques, receipts, international and
national transfers) between banks.

• Processes between a bank and its providers: This refers to basic supplies
common to any industrial sector and to information providers that are
specific to the financial business. The setting up of such processes
requires many resources, in some case due to the development costs and
in others due to the necessity of using a certain amount of intelligence to
make them compatible with the banking system.

• Processes between a bank and its customers: This refers to product sales
processes and the use of the services that the bank makes available
through different channels.

Although there is room for big improvements in inter-banking processes,
it is in the second and third type of processes where a bank can make a big
difference with a significant use of ontologies. The data exchange of a bank
with its customers and providers can be automated, reducing cost and time,
so that the bank can provide better and more complex services to its
customers. This has been the path travelled by Bankinter and iSOCO and is
the goal of this chapter.

Bankinter is currently offering a free service that presents data about
mortgages from a set of banks in Spain. Bank employees obtain this data
manually, by browsing Web pages (when available) or by calling each bank
to gather the information. The use of Semantic Web Services (SWS)
technology can offer to replace the manual work and therefore improve the
bank’s resource utilization. If business partners such as mortgage providers
develop, deploy and expose Semantic Web Services for public use, bank
applications can discover them and utilize them automatically, thus reducing
the dependency on human input.

Consequently, more services (product price comparators, information
broker, deposits, etc.) can be offered by banks due to their low cost, since

1 Read process in the generic sense of communication mechanism. This is not limited to Web

Services, for example.

232 Chapter 8

less human interaction is required to discover and invoke new available SWS
once the application is launched. Some of the advantages of SWS over state-
of-the-art Web service technology can be named.

When facing standard Web Service registries, such as the Universal
Description, Discovery and Integration (UDDI), with a large number of
exported Web Services, the lookup (discovery) becomes a serious problem.
There is no standard for service goals or capabilities in current Web Service
Description Language (WSDL) which prevents automatic service discovery.
For example, a bank offering a mortgage information Web service only for
fixed interest rates and with a maximum period of 20 years will not be able
(or will have many difficulties) to publish such constraints in UDDI
registries. External parties looking for services that match those
characteristics will not be able to know in advance whether the service is
providing this information according to those constraints.

When the discovered services have been defined according to a set of
heterogeneous models, discrepancies may occur in the execution of those
services. This is summarized as follows by Gartner Research (February 28,
2002): ”Lack of technologies and products to dynamically mediate
discrepancies in business semantics will limit the adoption of advanced Web
services for large public communities whose participants have disparate
business processes.” Thus, the possibilities of better discovery and mediation
are the main advantages of SWS technology over current Web service
technology in the context of the described financial application.
Bankinter offers services to consult different kinds of stock market
information (news, charts, index variations, stock prices), services to sell and
buy stocks, services to send alerts and others. These services allow operating
on the continuous stock market using a complete service delivery platform
based on Web Service technology.

The StockBroker prototype took advantage of the technology that has
been developed inside the European Research Project called DIP (automatic
service discovery, service composition and service mediation), to construct
complex operations working on different formats and driven by the final user
requests. It uses a natural language interface to define the user goal and to
construct and invoke the services. In order to build an SWS based solution of
the prototype several Semantic Web Services were developed. As the
StockBroker prototype uses Semantic Web Services, this prototype
contributed to one of DIP’s main goals. The application of Semantic Web
Services as an infrastructure in real world scenarios within an organization
and between organizations and its customers provided a use case for the use
of WSMO (Web Service Modelling Ontology) in the description of the SWS
involved in an application, and for the use of the SWS architecture defined
in the context of the project.

8. Ontology Management in E-Banking Applications 233

The content of the chapter is structured as follows; first, we will look at
existing standards on financial institutions and how they have been used in
the applications developed. After that, we will provide evidence of the use of
ontologies in e-Banking applications, highlighting lessons learned and
making some practical remarks.

3. REUSING EXISTING CONSENSUS

Standardisation efforts in the banking domain are very slow. Efforts
made by several organizations, such as the Mortgage Industry Standards
Maintenance Organization, Inc. (MISMO) or the Society for Worldwide
Interbank Financial Telecommunication (SWIFT), did not succeed in
deploying standard world wide and the produced vocabularies can hardly be
considered as references, at least in the Spanish bank domain.. Innovation-
oriented banks like Bankinter prefer creating innovative products on their
own, so that they have some competitive advantage during a short period
(usually around half a year) leading the way for financial institutions that
mimic its innovations. That is, we strongly believe that a bank like Bankinter
will adopt its own conceptual model and then, if successful, this model will
be progressively adopted by other banks.

This is well documented by a Forrester Research business report (2001) ,
in which the process of ontology adoption in business is explained: The
financial domain is very dynamic, new products appear on a weekly basis
and some of them cannot be categorised a priori. There is a high complexity
in the current financial standards, such as IFX (International Financial
eXchange2), and reaching agreement between different financial entities is
difficult as well, as mentioned earlier.

There are also strong reasons to develop a new ontology (based on
existing ontologies and standardisation initiatives) instead of directly
applying already existing ones:

• In a mature market, such as the financial one, the only advantage
competitors have is their expertise and a technology approach.
Therefore, standardisation proposals usually result in long projects. In
these projects, the strongest banks usually impose their own criteria on
the rest, while small banks try to find a way to make things slightly (or
completely) different, in order to contend where their big competitor
cannot. In that business frame, a descriptive but not-too-complex
ontology makes the standardization process easier and faster. It also

2 IFX Forum, http://www.ifxforum.org/home

234 Chapter 8

allows each bank to model its own complexity while maintaining a
certain degree of differentiation within a common framework.

• Most of the existing ontologies that we have studied model the financial
domain from a customer point of view, and do not sufficiently cover the
internal processes that a bank must follow to deploy a mortgage contract
or to extract information from the stock market.

We have focused on those parts of the ontology that are applicable to our
specific needs. The resulting ontology would cover the requirements of the
aforementioned prototype. The ontologies we have built cover in broad
terms the financial domain and more specifically those concepts that are
more relevant for the application of mortgage loans and for the Stock Market
environment and covers almost all the concepts required to semantically
describe these markets.

We have established relationships between all the concepts available
from the same point of view, with special attention to the possible
combinations of information that a stock market service can perform.

Studying the actual standards, however, provides us with the opportunity
to gather the necessary vocabulary in order to better model our ontology.

• For developing semantic e-Banking applications, we tried to adapt the
standard Interactive Financial eXchange (IFX), which is an XML-based,
financial messaging protocol, built by financial industry and technology
leaders, designed for interoperability of systems seeking to exchange
financial information internally and externally. IFX is built with the
recognition that no single financial transaction stands on its own, but is
an integral part of the relationship among all of the communicating
parties; a payment is not complete until a remittance is sent, an ATM
withdrawal is not complete until a consumer’s account has been debited,
and so forth.

• XBRL (Extensible Business Reporting Language) is the closest standard
to the stock market that we have found. We have analysed it to develop
the specific Stock Market Ontology. XBRL3 taxonomy focused on
“financial exchange of information in the reception and diffusion of the
periodic public information (quarterly and semester information) that
the listed societies with shares admitted to quotation must send to the
supervisor”4. Thus, this taxonomy is used to report the periodic
information of companies to the stock market authorities and therefore
we have used it for reference and to pick up several useful terms.

3 http://www.xbrl.org
4 http://www.xbrl.org.es/english/english.html

8. Ontology Management in E-Banking Applications 235

The ontologization of these standards could have been a solution, since
the translation of XML documents to an ontology language could be
automatized and enhanced further, in order to profit from the semantic
expressivity of ontology languages. However, we clearly noticed, from the
very beginning, that trying to adapt and ontologize IFX or XBRL would be a
paramount effort (that was beyond the scope of the prototypes we were
building). Furthermore, the target of those standards was mainly oriented to
the exchange of messages between financial institutions and not directly
addressing the relationship of a bank with its customers (at least not for the
two scenarios we have foreseen: mortgage loans and stock brokerage). The
level of IFX was too detailed for the purpose of the prototypes and would
need extension and customization as well for the specifics of the mortgage
loans and stock brokerage.

Other sources we have studied and adapted include:

• A financial ontology5 developed by Teknowledge that extends the
SUMO (Suggested Upper Merged Ontology) upper-level ontology and
provides some top-level terms in the financial domain.

• Mortgage information publicly provided by Web sites from twelve
Spanish banks, including the leaders in the mortgage market6, which are:
BBVA7, Santander8, Caja Madrid, La Caixa9, Banco Popular10,
iBanesto11, Patagon12, Bankinter13, Banco Pastor14, Banco Sabadell, and
BBK.

• To detect the most common terms used in the stock market, we have
taken a broad vision of the market for this ontology. To make it more
powerful, we have included in our research Spanish and worldwide
independent stock market services (i.e.: Yahoo Finances15, Reuters16,
Xignite17 and Invertia18), since they are increasingly used by costumers
and, usually, offer more detailed information than banks.

5 http://einstein.teknowledge.com:8080/download/register.jsp?fileType=.tar&fileName=FinancialOnt.tar
6 An unofficial ranking of Spanish banks with respect to their position on the mortgage

market is available at http://tinyurl.com/2evmq3
7 BBVA: http://tinyurl.com/2ds76a
8 Santander: http://tinyurl.com/2chesp
9 La Caixa: http://tinyurl.com/2bw72c
10 Banco Popular: http://www.bancopopular.es/simuladores/simula.asp
11 Banesto: http://www.ibanesto.com
12 Patagon: http://tinyurl.com/2b3y6b
13 Bankinter: http://tinyurl.com/267zbm
14 Banco Pastor: http://www.bancopastor.es/d30/d3020/3020_stage2.html
15 Yahoo! Finance: http://finance.yahoo.com/
16 Reuters UK: http://uk.reuters.com/home
17 Xignite: http://preview.xignite.com/
18 Invertia: http://www.invertia.com

236 Chapter 8

Figure 8-1. Mind map taken in a brainstorm session with domain experts

In our experience, the most fruitful stage of the conceptualization is when
some ontology engineer meets with domain experts. Depending on the size
and complexity of the Domain, we usually apply METHONTOLOGY
(Fernández et al., 1997) or DILIGENT (Pinto et al., 2004). As a first step,
we try to capture as much information as possible, using some tool for mind
maps as MindManager19©, FreeMind20 or MindMeister21 (for a shared online
conceptualization) as shown in the figure above.

4. EDITING AND BROWSING

As we have said, previously we have considered the use of a general-
purpose tool as a mind mapping tool for the first steps of knowledge
acquisition, allowing a shared and distributed editing of concepts and
relationships between the experts on the domain (usually bank employees)
and knowledge engineers (employees from iSOCO). Once a first draft of the
conceptualization is released, a deeper conceptualization is needed for the
creation of the set of ontologies needed for the applications we have made.

19 http://www.mindjet.com. Mind Manager is a comercial solution and provides a 30 days trial
20 http://freemind.sourceforge.net/wiki/index.php/Main_Page#Download_and_install .

FreeMind is an free software under the GPL license.
21 http://www.mindmeister.com/ MindMeister provides free or Premium access. It allows

collaborative online mind mapping.

8. Ontology Management in E-Banking Applications 237

For that purpose, we have used a couple of tools that have proved to be
effective and useful: Protégé22 and WSMO Studio23. The use of one tool or
other has been decided based upon the final use of the ontologies created
with them. For all the ontologies not directly related to Semantic Web
Services, like those connected more to the use and exploitation of Natural
Language Processing (NLP) needed for the applications, we have used
Protégé because of the support it provides for formalisms such as RDF
(Resource Description Framework) and OWL (Web Ontology Language) —
given that our suite for Intelligent Access to Information uses them. All the
ontologies that dealt with ontology learning for banking purposes thus were
described in RDF. Within this category, we can mention the Ontology for
Financial Products as the main input for product recognition in the NLP
component (Knowledge Access24). Other ontologies that were written in
RDF within Protégé were the Semantic Pattern Matching Ontology, used to
discover goals and further translated into WSMO Goals.

The combination of machine-processable semantics facilitated by the
Semantic Web with current Web Service technologies has coined the term
Semantic Web Services. Semantic Web Services offer the means to achieve a
higher level of value-added services by adding dynamism to the task driven
assembly of inter-organization business logics. They have the potential to
make the Internet a global, common platform where agents (organizations,
individuals, and software) communicate with each other to carry out various
activities. Semantic Web Services represent an extension to current Web
Services technology. They broaden the Web from a distributed source of
information to a distributed source of services (Lara et al., 2003), where
software resources can be assembled on the fly to accomplish user goals.

In order to allow the usage and complete integration of Web Services,
their capabilities need to be semantically marked up, and their interfaces
need to provide the means to understand how to consume their functionality.
Furthermore, the exchange of documents requires describing the meaning of
the content in a way that can be understood and communicated
independently of some particular domain knowledge.

22 Protègè: http://protege.stanford.edu/ . Protègè is available as free software under the open-

source Mozilla Public License
23 WSMO Studio: http://www.wsmostudio.org. WSMO Studio is available under LGPL

license.
24 Knowlegde Access Suite: http://isoco.com/en/solutions/customer.html

238 Chapter 8

Figure 8-2. Glimpse of the StockMarket ontology and the Jambalaya plug-in for Protégé

WSMO25 tries to alleviate these problems by defining the modeling
elements for describing several aspects of Semantic Web Services. WSMO
is a formal ontology and language for describing the various aspects related
to Semantic Web Services. It represents the backbone for the development of
the Web Service Modelling Language (WSML26) and the Web Service
Modelling Execution Environment (WSMX27). The conceptual grounding of
WSMO is based on the Web Service Modeling Framework (WSMF) (Fensel
and Bussler, 2002), wherein four main components are defined:

Ontologies provide the formal semantics of the information used by all
other components. Ontologies (1) are used to express goals in a machine
processable and understandable language; (2) permit enhancing Web
Services so they can be matched against goals; and (3) interconnect the
different elements with each other by means of mediators.

Goals specify objectives that a client may have when consulting a Web
Service. They provide the means to express a high-level description of a
concrete task.

Web Services represent the functional part which must be semantically
described in order to allow their semi-automated use.

Mediators used as connectors provide interoperability facilities among
the rest of components. Currently the specification defines four different

25 WSMO: http://www.wsmo.org
26 WSML: http://www.wsmo.org/wsml
27 WSMX: http://www.wsmx.org

8. Ontology Management in E-Banking Applications 239

types of mediators, which are classified in two main classes: refiners
(ggMediators and ooMediators) and bridges (wgMediators and
wwMediators). While refiners are used to define new components as a
specialization of an existing one, bridges help to overcome interoperability
problems by enabling components to interact with each other.

Given that our applications were designed to work with Semantic Web
Services, we have defined Ontologies, Goals, Services and Mediators in
WSML, to be executed within WSMX. For the definition of those, we have
used WSMO Studio, a Semantic Web Service modelling environment for
WSMO that has been built as a set of Eclipse28 plug-ins that can be further
extended by third parties.

The environment of WSMO Studio allows the creation of WSMO
concepts in two ways:

• Using the WSMO Editor. This editor allows you to conceptually
describe the different elements of WSMO. For each element, contextual
information can be provided in the form of properties, capabilities in the
form of axioms and many other things.

• Using the Text WSML Editor. The editor supports syntax highlighting
and extending the list of predefined WSML keywords by the user.

Figure 8-3. Describing a WSMO Goal with WSMO Studio

28 Eclipse: http://www.eclipse.org

240 Chapter 8

Sometimes is easier to use the form-wise structure of the WSMO Editor
(i.e., when creating the concept hierarchy or defining the choreography
interface), however on other occasions is wiser to write directly in the
WSML Editor (we have found that writing axioms in the Text WSML Editor
is the best way to finish them).

Once you have created your WSML files describing your Ontologies,
Goals and Services and, if needed, Mediators, you need to ground them in
order to make them reachable. For our StockBroker application we made use
of WSMX, the execution environment for WSMO. In WSMX, there are a
number of components that help you to create applications and other
elements that need to be extended in order to be used. Among the former, we
can find the QoS Discovery and Selection component, which allows
semantic matching of goals and services, as well as the Choreography engine
and the Invocation component. The architecture of WSMX allows the
creation of specific adapters to integrate an application within WSMX, by
using the Adapter Framework.

Figure 8-4. Writing an axiom using the Text WSML Editor

As we can see above in the conceptual architecture of the StockBroker,
and its relationship with WSMX, we will describe WSMX components and
how they were used in our prototype.

• Discovery: The WSMX Discovery component is concerned with finding
Web Service descriptions that match the goal specified by the service

8. Ontology Management in E-Banking Applications 241

requester. WSMO descriptions of the goal represent what a user wishes
to achieve (described in terms of a desired capability with preconditions,
assumptions, effects and post-conditions) and is matched with WSMO
descriptions of Web Services known to WSMX (described in terms of
offered capabilities). The Discovery component returns a list of Web
Service descriptions from various service providers.

Figure 8-5. Integration of the Stockbroker within WSMX

• Orchestration / Choreography. This component is responsible for
making service compositions. A WSMX Choreography (Figure 8-5)
defines how to interact with a Web Service in terms of messages
exchanged by means of communication patterns. A WSMX
Orchestration (Figure 8-5) describes how the service makes use of other
services in order to achieve its capability.

• Process Mediator / Mediation Process: A WSMX Process Mediator has
the role of reconciling the public process heterogeneity that can appear
during the invocation of Web Services. That is, it is to ensure that the
public processes of the invoker and the invoked Web Service match.
Since both the invoker and the Web Service publish their public
processes as choreographies, and the public processes are executed by
sending/receiving messages, the Process Mediator Component will deal
with reconciliation of message exchange patterns based on
choreography.

• Resource Manager: This component is necessary to manage the
persistent storage WSMO objects it will be provided with by other
components within WSMX. The component implementing this interface

242 Chapter 8

is responsible for storing all data. WSMO4J29 provides a set of Java
interfaces that can be used to represent the domain model defined by
WSMO.

Figure 8-6. Testing Web Service invocation with StrikeIron Analyzer

• Communication Manager: This component is necessary to manage the
interaction with the system. The Communication Manager accepts the
message and handles any transport and security protocols used by the
message sender. The Communication Manager is responsible for dealing
with the protocols for sending and receiving messages to and from
WSMX. A specific e-Banking Adapter performs this work by
connecting the StockBroker outgoing messages with the WSMX
incoming messages. The importance of this adapter is paramount when
integrating third party services, as you need to create specific WSML to
XML translators for them and vice versa. For the testing of the delicate
task of grounding Semantic Web Services, we have used a tool for
inspecting Web Services. As one of the providers of third party services

29 WSMO4J: http:// wsmo4j.sourceforge.net

8. Ontology Management in E-Banking Applications 243

we were using was StrikeIron, we used its StrikeIron Web Service Tools
Suite30. When using Web Services that have not been designed to work
with your application, a smooth integration is more a myth than an
industrial reality. For that reason, we use the StrikeIron Analyzer, jointly
with the output of the e-Banking Adapter to test and tune the XML to the
WSML translator.

Our experience has told us that the integration of ontologies and other
semantic technologies with commercial deployed services is far from the
promised “seamless integration.” However, the results have been
satisfactory for the goals we have in mind. There is still work to be done in
fields like Service Grounding, that will help us to automate the connection
between a semantically enhanced service and its mapped Web Service.

We have opened the path for future e-Banking applications where the
need for automation and an overall and shared vision of information is so
important.

5. CONCLUSIONS

We have presented some experiences with dealing with semantic
technologies and Semantic Web Services within the financial domain. Based
on these experiences, we can formulate some lessons learned with regard to
choosing the application field, implementing the technology, and analyzing
benefits of the SWS approach.

The e-Banking application field described in this chapter can be
characterized by three features, which in our opinion rationalize the
additional effort required by a solution based on SWS. Firstly, the
environment is distributed. There are many actors involved in the process of
offering a mortgage to the final customer or several providers in competition
to offer their resources in the StockBroker prototype, and many information
sources influencing the decision taking process. This feature ensures that the
potential of semantically enhanced discovery and composition can be
utilized.

Secondly, the market is dynamic. The circumstances change, the products
evolve and the partners come and go. This feature of the environment
ensures that a one-time investment will pay off in the long term. The loose
coupling enforced by separating goals and Web service descriptions enables
SWS-based applications to continue working even if some of the Web
Services used in application stop working, provided that an alternative Web
Service can be dynamically discovered and invoked.

30 StrikeIron WS Analyzer: http://www.strikeiron.com/tools/tools_analyzer_windows.aspx

244 Chapter 8

Thirdly, our application field is profitable, but not mission critical. These
two characteristics should be a general guideline for introducing new
technologies, as the initial costs of adopting new technologies are influenced
by the need of training the personnel, which can pay off in the longer term.
New technologies bear risks, however, which can be minimized when they
are deployed in an iterative process, starting with low-risk areas. With
respect to the characteristics of markets described above, we have shown
how SWS can bring benefit in B2B and B2C application integration
scenarios. In the financial domain, the benefits focus on the automatic
discovery and invocation of third party services provided by Semantic Web
Services. We expect that with the ongoing work on these functionalities, as
well as on composition and mediation, these benefits will be boosted further,
so that SWS will become a common artefact in enterprise IT landscapes.

REFERENCES

Fensel, D. and Bussler, C., 2002, The Web Service Modeling Framework WSMF, Electronic
Commerce Research and Applications, 1(2)

Fernández, M., Gómez-Pérez, A., and Juristo, N., 1997, METHONTOLOGY: From
Ontological Art Towards Ontological Engineering, in: Spring Symposium Series, Stanford,
pp. 33-40.

Forrester Research, 2001, How the X Internet will Communicate. Available at
http://tinyurl.com/yp732s.

Lara, R., Lausen, H., Arroyo, S., de Bruijn, J., and Fensel, D., 2003, Semantic Web Services:
description requirements and current technologies, in: International Workshop on
Electronic Commerce, Agents, and Semantic Web Services, In conjunction with the Fifth
International Conference on Electronic Commerce (ICEC 2003), Pittsburgh, PA, 2003.

Orlikowski, W.J., 1992, The Duality of Technology: Rethinking the Concept of Technology
in Organizations, Organization Science, 3, pp. 398-427.

Pinto, H., Staab, S. and Tempich, C., 2004, DILIGENT: Towards a fine-grained methodology
for DIstributed, Loosely-controlled and evolvInG Engingeering of oNTologies, in:
Proceedings of the 16th European Conference on Artificial Intelligence (ECAI 2004),
August 22nd–27th, 2004, Valencia, Spain.

Chapter 9

ONTOLOGY-BASED KNOWLEDGE
MANAGEMENT IN AUTOMOTIVE
ENGINEERING SCENARIOS

Jürgen Angele, Michael Erdmann, and Dirk Wenke
ontoprise GmbH, Amalienbadstraße 36 (Raumfabrik 29), D-76227 Karlsruhe, Germany
{angele | erdmann | wenke}@ontoprise.de

Abstract: Nowadays the increasing complexity of cars has become a major challenge for
car manufacturers, especially due to the growing rate of electronic components
and software. This trend impacts all phases of the car’s lifecycle, e.g. the
process of testing cars and components. We describe a project from the
automotive industry where a semantics-based approach is employed for
improving the process of testing different configurations of cars. Here,
ontologies serve two main purposes: (i) representing and sharing knowledge to
optimize business processes for testing of cars and (ii) integrating live data
into this optimization process. The ontology has been created and is now
maintained with OntoStudio®. The ontology has been integrated into the
internal order system of the car manufacturer to reduce the communication
effort between the engineers for configuring test cars and to avoid
misconfigurations of test cars.

Keywords: applications; automotive; engineering; information integration; rules; Semantic
Web

1. INTRODUCTION

The automotive industry today is moved by two main trends: the
reduction of time-to-market, and the increasing demand for built-to-order.
Time-to-market reflects the reduction of innovation cycles, whereas built-to-
order refers to the move from the mass production of cars to a limited-lot-
production of individual cars. Both trends require an optimization of
processes: the manufacturing process and also earlier steps such as research,

246 Chapter 9

development, and testing. Manufacturing and development benefit from
close collaboration with suppliers. Thus, knowledge sharing between
different organizations and between different departments of the car
manufacturer is required.

In this chapter we describe an ontology based application for configuring
test cars of a car manufacturer. The semantic model is mainly used to make
sure that only valid configurations are actually built. The ontology serves
two different tasks: (i) representing and sharing knowledge to optimize
business processes for the testing of cars, and (ii) integrating live data into
this optimization process.

The ontology-based application integrates legacy systems of the
manufacturer to access up-to-date information for the test-data-analysis. This
data is semantically enriched with background knowledge consisting of a
complex domain ontology and inference rules. The enriched model
accelerates the configuration of test cars and, thus, reduces time-to-market.

The ontology and rule base were created and are now maintained with
OntoStudio®, an ontology editor that has been developed by Ontoprise with
five main objectives:

1. Ease of use
2. Ontology development supported by inferencing
3. Development of rules
4. Support for reuse and integration of legacy/non-ontological information

sources
5. Extensibility through plug-in structure

This chapter starts with the presentation of a use case for ontology use in
the automotive industry (Section 2). It continues with an introduction of the
relevant features of OntoStudio and illustrates them based on the use case
(Sections 3–5, basic modeling, reasoning support for modeling, and
integrating legacy data) before summarizing the benefits of building
ontology based applications for the automotive industry.

2. CASE STUDY: CONFIGURATION OF TEST
CARS

Having a look at the shares of vehicle sales in US from 1970 – 2001 (see
Figure 9-1) we observe that the big three automobile vendors (Chrysler,
Ford, General Motors) considerably lost market shares in that time period.
One of the reasons was that before the early nineties the quality of their cars
compared to the competitor’s cars was very poor. Then the big three started

9. Ontology-based Knowledge Management in Automotive Engineering 247

a quality offensive which resulted in a slight market gain until 1994. But
after 1994 the big three again lost market shares. The reason for the second
loss which lasts until today is the slow innovation in the automotive industry
in US. The competitors in Asia and Europe have been able to strongly
reduce the time for developing new cars. As a consequence time-to-market is
one of the main optimization goals in the automotive industry.

Figure 9-1. Market shares of vehicle sales (source: Wards automotive yearbook)

Another very important trend in consumer oriented production industry is
built-to-order. Built-to-order means that a product is immediately produced
and delivered after the consumer has configured the product according to his
wishes. With this strategy Dell edged out a lot of its competitors on the PC
market. In contrast to that in the automotive industry cars are first developed
and then manufactured in large amounts with a high degree of optimization.
Very often the results are huge amounts of cars which cannot be sold and
thus produce costs for the investment and for storing them. Finally, these
cars must be sold with large sales discounts which again reduce the profit of
the manufacturer. Built-to-order avoids all these problems but requires a
severe change of logistic and business processes. Built-to-order reduces the
mass production of cars to a limited-lot-production. Emphasis for
optimization issues moves from the production step to earlier steps such as
the collaboration between suppliers and manufacturers in development and
delivering. Thus, knowledge has to be shared between different
organizations and departments. Therefore, the main emphasis has to be put
on optimizing these business processes.

The scenario for this process was given by the business processes around
the testing of cars. The car company has a fleet of test cars. These test cars
are continuously reconfigured and then tested with this new configuration.
Reconfiguration means changing the engine, changing the gear, changing the
electric, i.e. changing all kinds of parts. For the changing of parts a lot of
dependencies between these parts have to be taken into account. In many
cases these dependencies are only known by a few human experts and thus

248 Chapter 9

require a lot of communication efforts between different departments of the
manufacturer, between the manufacturer and suppliers, and between
suppliers. Very often test cars have been configured which did not work or
which hampered the measurement of the desired parameters. So making such
dependencies exploitable by computers allows for reducing the error rate in
configuring test cars with a lower communication effort. This in turn
accelerates the development of new cars and enhances the collaboration
between manufacturer and suppliers. Thus it reduces time-to-market and
supports the built-to-order process.

The resulting system is based on an ontology. This ontology has two
major objectives. Firstly it represents the terminology and the complex
dependencies between the different car parts. These dependencies are
represented as relationships and rules. Secondly the ontology serves as a
mediator between data from different sources (Maier et al., 2003), especially
to integrate up-to-date data about parts etc. from the legacy systems of the
manufacturer.

The ontology has been integrated into the internal order system as a
software assistant, which helps the engineer in configuring test cars. The
engineer asks the assistant for a reconfiguration and the system answers with
the dependencies which have to be taken into account and the contact
information for experts in this case. Additionally, the assistant will provide
explanations which help the engineer to understand and validate the decision
of the assistant.

While in our case the ontology was used to enhance the internal order
system the same ontology may be reused for the dynamic configuration of
cars in a built-to-order process as well. Restrictions like “The power of the
engine must not exceed the one of the brakes” need to be checked also
during the dynamic configuration of cars.

For the development of the ontology, the ontology modeling environment
OntoStudio® was used. During the project it became clear that the following
features were very important:

• The ontology is the communication medium between engineers and
knowledge engineers. It turned out that graphical means are very well
suited for this communication process. This holds especially for complex
knowledge representations like rules.

• The ontology must provide immediate feedback, i.e. it is very useful to
have it seamlessly integrated with an inference engine which evaluates
rules and which creates answers during modeling and validates the
model. Also, in this process the immediate feedback from the engineers
was crucial. For complex models sophisticated means for debugging and
analyzing the models must be provided by the ontology modeling tool.

9. Ontology-based Knowledge Management in Automotive Engineering 249

• In our case a lot of information was stored and maintained in the legacy

systems of the car manufacturer, i.e. an important part of the
development was reengineering this information and attaching it to the
ontology. As this data will further be maintained in the legacy systems it
is important to access this information on a real-time basis instead of
importing all this information into the ontology system. To be flexible
for changes in the legacy systems even this attachment must be
supported by graphical means.

• For the run time system the performance of the system is crucial. The
ontology tool should support optimization and deployment of the model.

• Finally, the model will no longer be maintained by pure knowledge
engineers in future. Instead, the mechanical engineers should be able to
maintain and extend it. Thus, the tool should be intuitive enough to be
used by them. Again, graphical means are very well suited for this issue.

3. ONTOLOGY MODELING

The automotive case is a very versatile modeling use case, because many
different applications occur. A basic ontology has to be created, existing
information has to be integrated, and the expert knowledge of the engineers
has to be formalized in a kind of rules. Thus, the modeling process can be
divided into four phases:

• the analysis of the domain,
• the construction of the ontology,
• the integration of already existing information in the legacy systems, like

in databases, and
• the modeling of the expert knowledge as rules.

This modeling process is described in the subsequent sections.

3.1 Concepts, relations, attributes, instances

The initial step in the modeling process (the analysis of the domain) is
necessary to exactly define the domain, which is a challenging task because
the domain experts in most cases do not know how to develop an ontology
and the knowledge engineers do not have sufficient knowledge of the
domain. To complete this task knowledge must be transferred from the
domain experts to the knowledge engineers.

To initiate this transfer, the OnToKnowledge methodology (Sure and
Studer, 2002) was used, where the domain experts fill out competency

250 Chapter 9

questionnaires, in which they describe what they expect from the later
system and what questions it should be able to answer. The described
expectations and stated questions provide a good basis to start the modeling
process. Examples for the formulated questions were:

• Is the configuration of the current test-car valid?
• What are the errors of the configuration?
• Which components do not match?
• Which components are connected to the battery?
• Are the brakes sufficient for the power of the engine?

The domain experts provided some hundred of these domain specific
questions, which were used afterwards to identify the key terms and
properties such as configuration, component, engine, battery, etc. After the
extraction of the key terms, the modeling phase started. In this step the
ontology was formalized using OntoStudio (cf. Figure 9-2). A large amount
of concepts was created and arranged in a subsumption hierarchy. Most of
them were related to the different parts of the car, e.g. engine, chassis, or
gear.

Figure 9-2. An excerpt from the automotive ontology

9. Ontology-based Knowledge Management in Automotive Engineering 251

Attributes have been used for the specific attributes of the different
components. Only a small set of relations was needed to describe the
relationships between the components, such as the containsComponent
relation describing that one component is part of another component.

Instances have been added temporarily for testing purposes only. All real
instances have later been integrated from different legacy systems by using
the integration features of OntoStudio.

3.2 Rules

An ontology without rules describes only simple, structural relationships
between concepts like parts being part of components, parts being connected
to other parts etc. More complex relationships have to be described by rules
and constraints. It is this more complex knowledge which has to be captured
by the ontology to help configuring test cars. In the following such
constraints are presented:

Constraint 1: For a given configuration the devices connected to the
battery must match the amperage of the used battery.

Constraint 2: For a given configuration the maximum power of the
motor must not exceed the one of the brakes, i.e. Pmotor <= Pbrakes

Constraint 3: For a given configuration the filter installed in a catalyst
must match with the motor’s fuel.

These constraints could easily be modeled by the engineers using
OntoStudio’s graphical rule editor. It enabled the users to build complex
rules using graphical means, thus abstracting from the concrete syntax of the
rules. OntoStudio automatically generates the logical syntax out of the rule
diagrams and optimizes it for execution.

The graphical representation of constraint 1 is shown in Figure 9-3. The
ellipses describe concepts, labeled arrows describe relationships. The
squares represent attribute values. Thus, there is a configuration with two
components: a battery and a component. The battery is connected to the
component. The battery has amperage and the component has amperage and
both are not equal. If all these conditions hold, the implication (in green) also
holds: the configuration is flagged with an error that has two non-matching
components.

252 Chapter 9

Figure 9-3. Rule diagram for constraint 1 with explanation text in the bottom window.

The experiences in this project have shown that the graphical
representation of rules seems to be intuitive enough to serve as a
communication medium between the knowledge engineers and the
mechanical engineers, i.e. the domain experts understood the model to give
valuable feed-back.

3.3 Explanations

If the system detects an error in a given configuration the mechanical
engineer still needs the rationale behind it. Thus, the system should be able
to generate explanations how it deduced this result. This problem is solved in
OntoStudio and OntoBroker® by storing information about the inference
process during the evaluation of rules, which can be used to generate
explanations for the results.

To obtain readable explanations OntoStudio integrates an explanation
editor which allows assigning explanation patterns consisting of readable
text for rules. For example, the bottom part of Figure 3 shows the
explanation editor for constraint 1. The explanation text contains variables

9. Ontology-based Knowledge Management in Automotive Engineering 253

(indicated by a leading “?”) which stand for instances of concepts or values
of attributes in the rule:

“The configuration is not correct, because the component ?aComponent
needs amperage of ?attributeValue2 but the installed battery only
provides amperage of ?attributeValue1”

During the inference process the concrete values for all variables are
recorded and, thus, an explanation is generated from this text pattern like:

“The configuration is not correct, because the component Controller45a
needs amperage of 95Ah but the installed battery only provides
amperage of 70Ah”.

Because all the dependencies of all used rules are recorded, complex
explanations in a hierarchical form can be created to explain the full depth of
deduction. The explanation feature is a very useful means for the mechanical
engineers to get an insight into the reasoning and validate the model or find
incorrect rules.

4. REASONING FOR ENGINEERING

While the ontology evolves and the set of axioms grows, the need to
ensure that the ontology together with the rules describe a consistent and
correct model of the domain increases. Especially the set of rules and their
interrelationships are sometimes complex to survey as a whole. With rules
two types of major problems occur:

• Semantic errors in the rule: sometimes the engineers fail in modeling the
intended meaning. OntoStudio provides several tools for verifying the
ontology which are all based on reasoning:
o The Rule Debugger enables engineers to localize errors in a set of

rules.
o The Analyzer allows verifying that the ontology satisfies predefined

constraints.
o The Regression Test Feature allows for generating and executing

test cases.
• Performance issues: depending on the definition, rules can severely

hamper the performance of the resulting system. The inference engine
OntoBroker is seamlessly integrated into OntoStudio. This strongly
supports a prototyping approach where modified/extended models can
immediately be executed in posing appropriate queries. This provides
early feedback about the quality and also the performance behaviour of

254 Chapter 9

the model. This allows measuring and displaying performance
information and also taking counter measures via choosing different
parameters for the inference mechanism such as optimizing the rule set
for a specific type of queries.

4.1 Logical foundations

In order to provide a clearly defined semantics for the knowledge model
of OntoStudio, its knowledge structures correspond to a well-understood
logical framework, viz. F-Logic (cf. (Kifer et al., 1995), “F” stands for
“Frames”). F-Logic combines deductive and object-oriented aspects: “F-
Logic [...] is a deductive, object-oriented database language which combines
the declarative semantics of deductive databases with the rich data modeling
capabilities supported by the object oriented data model.” (Frohn et al.,
1996). F-Logic allows for concise definitions with object oriented-like
primitives (classes, attributes, object-oriented-style relations, instances) that
are reflected by the OntoStudio GUI. Furthermore, it also has Predicate
Logic (PL-1) like primitives (predicates, function symbols), that are only
partially reflected in the GUI but internally used within the data structures.
F-Logic allows for rules and constraints that further constrain the
interpretation of the model. F-Logic rules have the expressive power of
Horn-Logic with negation.

Normal programs are Horn programs where rules may contain negated
literals in their bodies. The semantics defined for these normal programs is
the well-founded semantics (van Gelder, 1993). In (van Gelder et al., 1995),
the alternating fixpoint has been described as a method to operationalize
such logic programs. This method has been shown to be very inefficient.
Therefore the inference engine realizes dynamic filtering (Kifer and
Lozinskii, 1986) which combines top-down and bottom-up inferencing.
Together with an appropriate extension to compute the well-founded
semantics this method has been proven to be very efficient compared to
other Horn-based inference engines (cf. e.g. (Sure et al., 2002b)). For
detailed introductions to the syntax and the object model of F-Logic, in
particular with respect to the implementation of F-Logic in OntoBroker, we
refer to (Erdmann, 2001; Decker, 2002; Ontoprise; 2002).

Our example rule from Figure 3 reads in F-Logic syntax like this:

error(?X,?Y):error[notMatchingComponents->>{?X,?Y}] AND
?C[hasErrors->>error(?X,?Y)]
<-
?C:Configuration[hasComponents->>{?X,?Y}] AND
?X:battery[hasAmperage->>?Z1] AND
?Y:component[connectedTo->>?X, hasAmperage->>?Z2] AND
?Z1 != ?Z2.

9. Ontology-based Knowledge Management in Automotive Engineering 255

4.2 Debugging rules

Creating explanations and querying for answers is one way of validating
an ontology with a complex set of rules. While this method targets the end
users of the final system, a more flexible way for validation is needed by
ontology engineers.

In the automotive use case the engineers developed some one hundred
rules expressing the dependencies of the various components with many of
them depending on other rules. If a query is not returning the correct result,
this linkage to many rules makes it hard to determine which of the rules
actually is the real cause of a wrong result. Thus, the engineers need tools
that can show the linkage between the rules and that enable them to
investigate the query evaluation process to observe the rules step by step to
identify the rule that is not modelled properly.

For these purposes OntoStudio includes a debugging environment that is
aligned to the intuitive process of debugging ontologies. Ontology engineers
debug queries in an iterative process:

1. Analyze the rule dependencies, i.e. the rule graph.
2. Execute the query/rule body partially to find the part that is not returning

the expected results.
3. Detect whether (a) basic facts are missing, or (b) another rule does not

infer the expected information.

Thus, the debugging process resembles a drill down process starting at
the query looking for the results and then drilling down into rules delivering
partial answers, etc. This interactive process is supported by OntoStudio’s
Rule Debugger, which is shown in Figure 4. It contains a visualization of the
rule dependencies in the upper left corner, where the user can see whether all
rules that should be involved in the execution of the query are correctly
involved. If a rule is missing in the rule graph, then the rule does not match
the other rules, which might be the cause of the problem.

If all rules are contained in the rule graph, one rule probably does not
return the values that are intended. To find this rule, the debugging
component allows for the partial execution of the query and rule bodies. The
intuitive way to find the defective rule is to remove some conditions in the
rule body to find out which conditions are not working. The component for
the partial execution of the rule bodies is shown in the upper right part of
Figure 9-4.

If the condition is found, it has to be checked whether instance
information is missing or whether another rule that should infer information
matching this condition is not working properly. In the latter case this rule

256 Chapter 9

has to be analyzed in the same way. Iterating these steps finally will
determine the defective rule.

Figure 9-4. Rule debugging in OntoStudio

4.3 Analyzing ontologies

Guidelines for ontology modeling help to ensure coherent ontologies and
thus a consistent level of quality. Support for testing the guidelines
inherently enhances the quality of collaboratively created models (Sure et
al., 2002a).

Integrating guideline checking into ontology engineering environments
helps to evaluate the guidelines during modeling time and guarantees
immediate feedback for ontology engineers. From our experiences with
ontology development and deployment we learned that for different purposes
ontologies must have different properties, e.g. for different target
applications (Lau and Sure, 2002; Sure and Yosif, 2002; Davies et al., 2003).

9. Ontology-based Knowledge Management in Automotive Engineering 257

Therefore, a flexible way of using and adapting guidelines is needed
instead of hard coding them. Guidelines might be used for technology-
focussed evaluations, e.g. to ensure that naming conventions are fulfilled (for
instance, some inference engines do not allow for white spaces in concept
identifiers while others accept them), or for ontology-focussed evaluations.
The definition of evaluation methods for such properties must be very
flexible and easily maintainable. So it is not convenient to hard code it into
the Ontology Engineering Environment itself.

The OntoAnalyzer plug-in offers this flexible and modularized checking
of formalized guidelines and constraints by making use of inferencing
capabilities. Logic is a very comfortable and powerful way to express
constraints on a conceptual level. For that purpose, the rule or constraint
language must be able to access the ontology itself, i.e. to make statements
about classes, relations, subclasses etc. This is possible with F-Logic, e.g. we
can formulate that a concept has at most one super-concept with the
following constraint:

! ?C :: ?S1 AND ?C :: ?S2 -> ?S1 == ?S2

Further examples for modeling guidelines can be derived from (Noy and
McGuinness, 2001). OntoAnalyzer is a tool which applies such constraints
to an ontology. It may be loaded with different constraint packages for
different purposes. Again, reasoning is used to actually execute the
constraint checking.

In the automotive use-case multiple users were involved in the modeling
process. In multi-user scenarios it is hard to ensure that the whole model is
consistent with respect to guidelines regarding modeling style or ontology
structure. In the automotive use-case a project-specific set of guidelines was
developed at the beginning of the modeling process. This set was integrated
as constraints into OntoAnalyzer and enabled engineers to verify the
consistency of the model at any time.

4.4 Regression tests

During the project, a large knowledge base was developed containing
many concepts, instances and rules. The larger such a model grows, the
higher is the impact of changes on the model and the rules. During the
project many changes were applied to the ontology and the rules. Concepts
were removed, new ones were added, and the underlying instance base was
changed. Additionally, the rules had to be adapted to these changes. The
engineers were confronted with the problem, that changes to the model by
other engineers influenced the results of their own rules. Additionally
created rules sometimes resulted in wrong results as well. Thus, it became a
hard task to ensure the stability of the ontology while the ontology evolved.

258 Chapter 9

A fairly simple but feasible approach for this problem is the creation of
regression tests. Regression tests are similar to unit tests in Java. These test
cases contain a query that shall be evaluated and the results that have to be
returned. By running the query and comparing the returned results with the
results stored in the test case, the user can easily check the correctness of the
current results.

During the project the engineers developed many test cases covering the
whole ontology and all rules. For every newly defined rule at least one test
case was created. The test suite containing all these regression tests was run
regularly to be able to detect failures in the model early. This enabled the
engineers to ensure the stability of the ontology and the correctness of the
modelled rules during the lifetime of the project.

OntoStudio supports this process by providing graphical means for the
definition of these regression tests. New regression tests can be created with
a single click and single tests or whole test suites can be run with a single
click. If a test fails, the results are interpreted and the differences in the
results are highlighted.

5. INFORMATION INTEGRATION

A major source for the automotive ontology is the parts breakdown
which is available from a database. For a car around 100,000 parts are stored
in such a list. In various workshops, appropriate generalizations of the parts
were discussed with the engineers, which finally resulted in the ontology.
Although the ontology was developed from scratch, it had to be in sync with
the information in the databases.

Ontologies and schema information are relatively stable over time. In
contrast, the data in databases can change quite frequently. Usually,
operational systems depend on both, schemas and access to current data.
This raises a couple of questions and challenges, e.g. regarding the
connectivity and the lifecycle of ontologies. In the context of semantic
information integration, legacy resources might be wrapped locally, while
the resulting semantic layer is to be deployed as a service for external access.
This allows departments, etc. to publish “their” models in a service-oriented
manner.

Ontology servers need to offer integration capabilities as well as a
transport layer for distributed models. Engineering environments need
support for lifecycle aspects (e.g. versioning) as well as management
capabilities for distributed ontologies (storage, registry, etc.). The
OntoBroker inference server provides a couple of functionalities for the

9. Ontology-based Knowledge Management in Automotive Engineering 259

distributed development and application of ontologies. This includes a Web
service-interface, a schema-connector and a schema-import for ontologies.

5.1 Information sources for ontology contents

Besides serving as a common communication language and representing
expert knowledge in our scenario, ontologies serve as an integration means
of different legacy systems. The ontology is used to reinterpret given
information sources in a common language and thus provides a common and
single view to different data sources.

In our scenario the components data and the configuration data stems
from different departments and different information sources like CAD-,
CAE- or CAT-systems or ERP/PPS-applications and databases. All these IT
systems accompany the whole PLM-process, beginning with the product
design and ending with the product release. Our test configuration system,
and thus our ontology system must access this live information to be up-to-
date, to avoid inconsistent data and to avoid additional effort.

An ontology could now catch up with these different sources and
integrate them in a common logical model. This goes much beyond building
just connectors between applications. The goal of integration is to
consolidate distributed information intelligently without redundancy and to
provide users and applications with easy means to access information
without considering the underlying heterogeneity of data structures and
systems.

In our case, we already have such a commonly accepted logical model:
the automotive ontology. This ontology describes schema information and is
not yet populated by instances, which means that there exists a concept e.g.
motor with attributes name, cylinders, fuel type etc. but there is no
information about actual motors like TDI V6, with 6 cylinders, fuel type
super etc. This information is provided by attaching the ontology to one or
more of the existing information sources. In the following we present an
example connection to a relational database.

5.2 Database schema import

The first step to connect an ontology to a database is importing the
database schema and visualize it in the ontology management environment.
The import schema results in a new ontology in which the database tables
are represented as concepts and the columns as attributes and relations. In
addition to relational database schemas OntoStudio can also import other
schemas like RDF or OWL. In our example we will show how to integrate
the database table motor with the ontology. The database table is displayed

260 Chapter 9

in Figure 9-5. It contains information about motors like the fuel type, power
etc.

Figure 9-5. Database table “Engine”

5.3 Database mappings

After importing the database schema, the ontology and the schema can be
connected. OntoMap, a mapping tool included in OntoStudio, supports the
fundamental mapping types (i) table-to-concept mapping, (ii) attribute-to-
attribute mapping, (iii) attribute-to-concept mapping, and (iv) relation-to-
relation mapping.

Figure 9-6. Visualized mappings within OntoStudio

9. Ontology-based Knowledge Management in Automotive Engineering 261

Figure 9-6 shows the imported database schema in the left tree-view and
the target ontology in the tree on the right hand side. A table-to-concept
mapping connects the table engine to the concept motor and, additionally, an
attribute-to-attribute mapping from id in the database to name in the
ontology. This means that every row in the database corresponds to one
object in the ontology. OntoStudio automatically creates a connection to the
database via the dbaccess-connector (there are various connectors for all
kinds of information sources available). This connector automatically creates
unique object IDs and is used in rules to retrieve data from the database and
make it available via the mapping to the ontology:

?X:Motor[name->?NAME,
 maximum_power->?MAXIMUM_POWER,
 volume_flow->?VOLUME_FLOW,
 fuel_type->?FUEL_TYPE]
 <-
dbaccess("engine",?X,
 F("id",?NAME, "absolute power", ?MAXIMUM_POWER,
 "volume_flow", ?VOLUME_FLOW, "fuel", ?FUEL_TYPE),
 "mssqlserver2000",
 "database_motor",
 "server_motordata:1433").

Another important mapping type is the mapping of attributes to concepts.
It implies that attribute values become unique IDs for ontology instances,
e.g. mapping the ID of engine to the concept motor creates an object for
every different ID in the database. Thus, information about one object which
is spread across different rows (or tables or even different sources) can
always be identified by the same ID and, thus, linked together. In the use
case, information about parts had to be integrated from many different
sources to yield a consistent and complete part list for the testing scenario.

A query to the integration ontology is, thus, translated at real-time (via
the mapping rules) into calls for appropriate built-ins which access the data
sources (in case of an RDBMS via SQL queries) and translate the answers
back into F-Logic. Thus, a user or an application using the ontology only
needs this single ontology view and a single vocabulary to retrieve all
necessary information. In our scenario different information sources
contribute to the same ontology. E.g. information about electronic parts is
stored in other databases than information about mechanical parts.
Information about the 3-D geometry of objects is separated from their
mechanical properties etc.

It is clear that in practice the different information sources contain
redundant or even inconsistent information. For instance in our scenario car
types have not been represented in a unique way. The assignment of
properties to car types has been described with different keys for one and the
same car type, e.g. keys like A3/A4 have been used to describe common

262 Chapter 9

properties of two car types while unique properties have been assigned to the
car type by a key A3. We again use rules and thus inferencing to solve such
integration problems.

?X:Car[carType->?Type, has_part->?Part]
<-
dbaccess("car",?X,
 F("id", ?T, "part", ?Part),
 "mssqlserver2000",
 "car database",
 "server:1433") AND
 tokenize(?T, ”/”, ?Type).

This rule retrieves information from the database via the dbaccess
predicate but processes the result by extracting the type information from the
ID via another predicate (tokenize which extracts A3 and A4 separately from
A3/A4).

Due to the schema import and the mapping rules, the automotive
ontology is always populated with the up-to-date instances from the legacy
systems. If the inference server is queried for some information (according
to the ontology) it results in a set of online (SQL-) queries to the relational
databases, thus, serving two important needs: (i) a rich, adequate conceptual
model, and (ii) access to the most recently available data.

6. CONCLUSION

The main role of OntoStudio as an Ontology Engineering Environment is
the provision of means to create, modify and navigate ontologies. The
modeling of the engineers resulted in an ontology with around 300 concepts,
around 200 rules and around 80 explanations. One person-year was spent to
develop this ontology and to integrate a first prototype of the application into
the internal ordering system of the car manufacturer. Feedback from the
domain experts shows that the notion of ontology is well understood and the
expressiveness of ontologies is appropriate for the modeling task at hand.

Essentially rules represent the main knowledge source in the models. The
graphical representation and the support given by the system really help
authoring rules. It turned out that the complex dependencies between
different car-parts needed to specify constraints could be expressed with
rules.

The close integration of the reasoner in the modeling environment esp.
via the testing and debugging facilities helps to bring the knowledge base to
life, which is great feedback for users to foresee the system’s behaviour
before actually deploying it.

9. Ontology-based Knowledge Management in Automotive Engineering 263

Ontologies were quite successful in integrating different information
sources about the configurations and parts of cars which is used to
automatically configure test cars. This reduces the communication effort
between the mechanical engineers, and reduces the error rate in configuring
test cars.

The resulting application, a test car configuration assistant, is based on
our ontology run-time environment and inference engine OntoBroker which
is based on F-Logic. The assistant embodies the created ontologies and rules,
together with the connected legacy sources and accelerates the configuration
of test cars for our customer and, thus, accelerates the development of new
cars, which finally reduces the time-to-market.

REFERENCES

J. Davies, A. Duke, Y. Sure, 2003, OntoShare – Evaluation of an ontology based knowledge
sharing system. Submitted 2003.

S. Decker, 2002, Semantic Web Methods for Knowledge Management. PhD thesis, Institute
AIFB, University of Karlsruhe.

M. Erdmann, 2001, Ontologien zur konzeptuellen Modellierung der Semantik von XML. PhD
thesis, Books on Demand.

J. Frohn, R. Himmeröder, P. Kandzia, C. Schlepphorst, 1996, How to write F–Logic programs
in FLORID. A tutorial for the database language F–Logic. Technical report, Institut für
Informatik der Universität Freiburg, Version 1.0.

I. Horrocks, J. A. Hendler, editors, 2002, Proceedings of the First International Semantic Web
Conference: The Semantic Web (ISWC 2002), volume 2342 of Lecture Notes in Computer
Science (LNCS), Sardinia, Italy.

M. Kifer, E. Lozinskii, 1986, A framework for an efficient implementation of deductive
databases. In Proceedings of the 6th Advanced Database Symposium, , Tokyo, August
1986, pp. 109–116.

M. Kifer, G. Lausen, J. Wu, 1995, Logical foundations of object-oriented and framebased
languages. Journal of the ACM, 42:741–843.

T. Lau, Y. Sure, 2002, Introducing ontology-based skills management at a large insurance
company. In Proceedings of the Modellierung 2002, Tutzing, Germany, March 2002, pp.
123–134.

A. Maier, M. Ullrich, H.-P. Schnurr, 2003, Ontology-based Information Integration in the
Automotive Industry. Technical report, ontoprise whitepaper series.

R. Meersman, Z. Tari, editors, 2002, Proceedings of the Confederated International
Conferences DOA, CoopIS and ODBASE - On the Move to Meaningful Internet Systems,
2002, Irvine, California, USA, LNCS 2519.

N. Noy, D. L. McGuinness, 2001, Ontology development 101: A guide to creating your first
ontology. Technical Report KSL-01-05 and SMI-2001-0880, Stanford Knowledge
Systems Laboratory and Stanford Medical Informatics, March 2001.

Ontoprise, 2002, How to write F–Logic programs — a tutorial for the language F–Logic.
Tutorial version 1.9 that covers Ontobroker version 3.5.

Y. Sure, V. Iosif, 2002, First results of a semantic web technologies evaluation. in (Meersman
and Tari, 2002).

264 Chapter 9

Y. Sure, R. Studer, 2002, On-To-Knowledge Methodology. In On-To-Knowledge EU IST-

1999-10132 Project Deliverable, September 2002.
Y. Sure, M. Erdmann, J. Angele, S. Staab, R. Studer, D.Wenke, 2002a, OntoEdit:

Collaborative ontology development for the Semantic Web. In (Horrocks and Hendler,
2002), pp. 221–235.

Y. Sure, S. Staab, J. Angele, 2002b, OntoEdit: Guiding ontology development by
methodology and inferencing. In (Meersman and Tari, 2002), pp. 1205–1222.

A. van Gelder, 1993, The alternating fixpoint of logic programs with negation, Journal of
Computer and System Sciences, 47(1):185–221.

A. van Gelder, K. A. Ross, J. S. Schlipf, 1991, The well-founded semantics for general logic
programs, Journal of the ACM, 38(3):620–650, July 1991.

M. Kifer, A. Bernstein, P.M. Lewis, 2005, Database Systems, An Application-Oriented
Approach, 2nd Ed., Addison Wesley.

Chapter 10

ONTOLOGISING COMPETENCIES IN AN
INTERORGANISATIONAL SETTING

Stijn Christiaens1, Pieter De Leenheer1, Aldo de Moor2, and Robert
Meersman1
1
Semantics Technology & Applications Research Lab, Vrije Universiteit Brussel, Pleinlaan 2,

B-1050 BRUSSELS 5, Belgium, stichris@vub.ac.be, pdeleenh@vub.ac.be,
meersman@vub.ac.be;

2
CommunitySense, Cavaleriestraat 2, 5017 ET Tilburg, the

Netherlands, ademoor@communitysense.nl. The work on this paper was done while the
author was still at VUB STARLab.

Abstract: This chapter summarises findings from CODRIVE1, a large-scale ontology
project in the vocational training domain. This competency area is complex,
and in order to achieve proper interoperability on the basis of ontologies, all
involved stakeholders must participate in interorganisational ontology
engineering. In particular, this chapter illustrates the DOGMA-MESS
methodology, a community-driven approach to ontology management. It
presents practical experiences for the issues addressed in the previous chapters,
complementing them with illustrative data and hands-on knowledge.

Keywords: competency modelling; case study; context dependency management;
interorganisational ontology engineering; ontology; ontology engineering

1. INTRODUCTION

Interorganisational ontology engineering (IOO) concerns different
organisations that collaboratively build a conceptual common ground of their
domain. Ontologies are instrumental in this process by providing formal
specifications of shared semantics. Such semantics provide a solid basis for
defining and sharing (business) goals and interests, and ultimately for
developing useful collaborative services and systems.

1 http://www.codrive.org

266 Chapter 10

Obtaining context-independent ontological knowledge, however, is very
difficult, sometimes even impossible as most organisational ontologies used
in practice assume a context and perspective of some community (Edgington
et al., 2004). Taking this in consideration, it is natural that ontologies co-
evolve with their communities of use, and that human interpretation of
context in the use and disambiguation of an ontology often plays an
important role. We aim to augment human collaboration effectively by
appropriate technologies, such as systems for context dependency analysis
and negotiation (see also Chapter 5 of this book) during elicitation and
application of ontologies for collaborative applications.

In order to make this context-driven co-evolution scalable, it is crucial to
capture relevant commonalities and differences in a gradual process of
meaning negotiation (de Moor, 2005) in order to reach the appropriate
amount of consensus. It is important to realize that costly alignment efforts
should only be made when necessary for the shared collaboration purpose. In
order to effectively and efficiently define shared relevant ontological
meanings, clear focus and context are indispensable.

1.1 Competencies as tacit knowledge

In the human resources domain, the (currently) smallest and most
important element we can identify is a (human) competency. Competencies
describe the skills and knowledge individuals should have in order to be fit
for particular jobs. Especially in the domain of vocational education, having
a central, shared competency model is becoming crucial in order to achieve
the necessary level of information exchange, and in order to integrate the
existing information systems of competency stakeholders (e.g., schools or
public employment agencies). However, none of these organisations have
successfully implemented a company-wide “competency initiative,” let
alone a strategy for interorganisational exchange of competency related
information.

For processing purposes, a competency is supposed to be measurable;
therefore it is crucial to define it very precisely. Knowledge artefacts are
usually induced bottom-up from data or deduced top-down from domain
experts, existing schemas and/or upper ontologies.

Competencies, however, are typical examples of knowledge that is
merely acquired through experience. This is called tacit knowledge (Nonaka
and Takeuchi, 1995). Polanyi (1967) used the phrase “we know more than
we can tell” to describe what he meant by tacit knowledge. Tacit knowledge
is a kind of knowledge which is difficult to articulate with formal language
because it is either too complex or simply because it is informally
internalised in domain experts’ minds. Yet it is shared and exchanged in

10. Ontologising Competencies in an Interorganisational Setting 267

normal social interaction. Furthermore, if we suppose that tacit competency
knowledge took an explicit form (e.g., in written documents), a new problem
arises: As there currently exists no standard for the representation, the
interpretation of such knowledge would require reflection among
individuals, which is subjective and ambiguous, hence useless for machine
processing. In such cases, the added value of eliciting ontologies through
externalising tacit knowledge from domain experts, rather than elicitation via
trained knowledge engineers, is considered increasingly important (Nonaka
and Takeuchi, 1995; Diaz, 2005).

1.2 A real world case study: the Dutch bakery domain

This chapter summarises findings from CODRIVE, a large-scale
ontology project in the area of competencies. CODRIVE aimed at
developing a new competency-driven approach to knowledge in vocational
education. One goal of this approach was to increase the interoperability of
knowledge services between Learning Content Management Systems and
public employment service applications. The approach is based on
consensual meaning negotiation in the vocational training and public
employment domain.

The project consisted of two phases, namely the elicitation and
application of a “Vocational Competency Ontology.” The first phase
involved the elicitation of an ontology to describe the Dutch bakery domain.
Two key issues could be identified. First, scalability, since the number of
stakeholders in this domain is very large, including representatives (e.g.,
bakers, teachers) from several bakery organisations in the Netherlands.
Second, terminological specificity, because the knowledge is very specific
and — as usual — unknown to knowledge engineers, even at the linguistic
level.

The second phase of the project considered applying the ontology to
solve the so-called gap analysis problem. Its solution should facilitate
matching between competencies, learning objects, and tests. Without the
ontology, this would require linking competencies to learning objects and to
tests, as well as learning objects to tests. This would lead to a combinatorial
explosion of the number of links, which would be hard to manage. The
scalability would degrade even further when considering the continuous
evolution of the knowledge artefacts involved. The particular problems
encountered in the application phase in the project, however, are beyond the
scope of this chapter.

This chapter is organised as follows: in Section 2, we give a description
of our used approach to interorganisational ontology engineering. Next, in

268 Chapter 10

Section 3, we present our use case experiences related to previous
theoretical chapters. Finally, in Section 4, we conclude with a discussion.

2. INTERORGANISATIONAL ONTOLOGY
ENGINEERING

In our case study we adopted the DOGMA2 ontology engineering
approach. The community layer is provided by the DOGMA-MESS3
methodology, which is based on the generic model for collaborative
ontology engineering, earlier discussed in Chapter 5.

2.1 DOGMA

DOGMA (Spyns et al., 2002, Jarrar et al., 2003, De Leenheer et al.,
2007) is an ontology approach and framework that is not restricted to a
particular representation language. The approach differs from traditional
ontology approaches in that (i) it is grounded in the linguistic representations
of knowledge and (ii) it explicitly separates the conceptualisation (i.e.,
lexical representation of concepts and their inter-relationships) from the
axiomatisation (i.e., semantic constraints). The goal of this separation,
referred to as the double articulation principle (Spyns et al., 2002), is to
enhance the potential for re-use and design scalability. This principle
corresponds to an orthodox model-theoretic approach to ontology
representation and development.

Conceptualisations are materialised in terms of lexons. A lexon
represents a plausible binary fact-type and is formally described as a 5-tuple
<C, term1, role, co-role, term2>, where C is an abstract context identifier,
lexically described by a string in some natural language. Intuitively, a lexon
may be read as “Within the context C, term1 may have a relation with term2
in which it plays a role, and conversely, in which term2 plays a
corresponding co-role.”

2.1.1 Language versus conceptual level

Another distinguishing characteristic of DOGMA is the explicit duality
(orthogonal to double articulation) in interpretation between the language
level and conceptual level. The goal of this separation is primarily to
disambiguate the lexical representation of terms in a lexon (on the language

2 acronym for Developing Ontology-Grounded Methods and Applications
3 acronym for Meaning Evolution Support System

10. Ontologising Competencies in an Interorganisational Setting 269

level) into concept definitions (on the conceptual level), which are word
senses taken from lexical resources such as WordNet (Fellbaum, 1998). The
meaning of the terms in a lexon is dependent on the context of elicitation (De
Leenheer and de Moor, 2005).

For example, consider a term “capital.” If this term were elicited from a
typewriter manual, it would have a different meaning (read: concept
definition) compared to when elicited from a book on marketing. The
intuition that a context provides here is: a context is an abstract identifier that
refers to implicit and tacit assumptions in a domain, and that maps a term to
its intended meaning (i.e. concept identifier) within these assumptions (Jarrar
et al., 2003).

2.1.2 Context dependency types

In (De Leenheer and de Moor, 2005), we distinguished four key
characteristics of context: (i) a context packages related knowledge: it
defines part of the knowledge of a particular domain, (ii) it disambiguates
the lexical representation of concepts and relationships by distinguishing
between language level and conceptual level, (iii) it defines context
dependencies between different ontological contexts and (iv) contexts can be
embedded or linked, in the sense that statements about contexts are
themselves in context. Based on this, we identified three different types of
context dependencies within one ontology (intra-ontological) and between
different ontologies (inter-ontological): articulation, application, and
specialisation.

Context dependencies provide a better understanding of the whereabouts
of knowledge elements and their inter-dependencies, and consequently make
negotiation and application less vulnerable to ambiguity, hence more
practical.

2.2 DOGMA-MESS

Where in the DOGMA methodology efficient and relevant ontology
engineering was central, the DOGMA-MESS methodology builds further on
these principles and extends them by supporting interorganisational
knowledge elicitation and negotiation grounded in communities of use. It is
based on the model for interorganisational ontology engineering (IOOE)
described in Chapter 5, and also follows the upward spiral knowledge
elicitation process. The main focus lies on how to capture relevant
commonalities and differences in meaning by supporting domain experts in
an efficient way by assigning them scalable knowledge elicitation tasks.
Differences are aligned insofar necessary through meaning negotiation.

270 Chapter 10

Figure 10-1 illustrates this: DOGMA-MESS was conceived with different
actor roles and layers in mind. The arrows in the diagram indicate different
types of dependencies between ontologies that constrain the possible
relations between entities and their context. An ontology that is context-
dependent on another one is called a contextualisation. Hence, the
contextualisation of ontological definitions might be constrained in different
ways. In the following three subsections, we will first explain the roles and
the layers, followed by some detail about the process.

Figure 10-1. DOGMA-MESS meaning layers

2.2.1 Roles

DOGMA-MESS was designed to allow proper and scaleable
interorganisational ontology engineering (IOO) in communities of practice.
One of its main goals is empowering domain experts to be involved in the
ontology engineering process. As this is a complex process, consisting of
many different and complex macro- and micro-processes, it is clear that a
suitable distribution of complexity is needed. In DOGMA-MESS, we divide
the problem into more manageable sub-problems and assign them to three
different user roles, the Knowledge Engineer (KE), the Core Domain Expert
(CDE), and the Domain Expert (DE).

• In more traditional approaches (e.g., the single-user ontology
engineering process model in chapter 5), the Knowledge Engineer (KE)

10. Ontologising Competencies in an Interorganisational Setting 271

is responsible for creating (and maintaining) knowledge in a formal way.
He collects knowledge through cost- and time-consuming interviews
(including those for validations and eliminating remaining ambiguities)
with domain experts. In DOGMA-MESS, the KE is at the outer
boundaries. He defines the system support (e.g., the exact tools, the
internal workings, etc.) and the high-level work artefacts (e.g., the Meta
Ontology). He assists the other DOGMA-MESS actors by tutoring them
in the system, and by analyzing the collected content.

• The Core Domain Expert (CDE) is a domain expert who is recognised as
an authority in the domain (e.g., through extensive experience). He is
connected with the relevant people involved to whom he can issue
detailed requests. He is able to reason about his domain in a more
abstract way, and is assisted by the KE in the higher complexity of
working at a more generic level (e.g., template construction). The CDE
defines the edges of the domain, introducing a necessary (but
manageable) amount of structure to the field (templates and type
hierarchy). He represents the common interest related to the community.

• The Domain Expert (DE) represents a certain organization (or
community). He deals only with domain-specific complexity, namely
defining in his owns words how he perceives his part of the domain. In
this process, he is both limited and guided by the structure imposed by
the KE and by the CDE. The CDE can assign clear tasks in order to
guide his Domain Experts in their elicitation.

2.2.2 Layers

DOGMA-MESS consists of four layers, with interlinking dependencies
to impose a supporting structure. Each layer is governed by a certain actor
role.

• A (permanent) Meta-Ontology (MO) is the same for all applications,
hence is pre-installed in DOGMA-MESS. It only contains stable4, hence
reusable, cross-domain concept types like ‘Actor,’ ‘Object,’ ‘Process,’
and ‘Quality.’ The Meta-Ontology also contains a set of core canonical
relations, based on the ones described in (Sowa, 1984), such as the
‘Agent,’ ‘Object,’ and ‘Result’-relations. This layer is governed by the
KE.

4 Although considered permanent and stable in this chapter, we do not exclude the possibility

this meta-ontology would evolve over time, although to a lesser extent than organisational
ontologies, possibly implying considerable effects on the system. We omit this discussion
further as it is beyond the scope of this chapter.

272 Chapter 10

• Each domain (in our case the Dutch bakery domain) has its own Upper

Common Ontology (UCO), and is maintained by the CDE. It grounds,
articulates and organises the (evolving) domain-common concept types
in its own Upper Common Concept Type Hierarchy, which is a
specialisation of the concept type hierarchy of the Meta-Ontology.
Domain canonical relations specialise core canonical relations in the
context of the domain. For instance, whereas ‘Agent’ is a core canonical
relation, in a particular domain this may be translated into ‘Person.’ The
most important type of construct in the UCO is the template. A template
describes a commonly accepted (i.e. agreed) knowledge definition and
acts as an incentive for further relevant knowledge elicitation steered by
the current common goals and interests.

• In the Organisational Ontology (OO) layer, templates are specialised
into Organisational Specialisations by the DEs representing the various
organisations. To this purpose, domain experts can introduce concept
types local to their organisation. The concept types in the Organisational
Concept Type Hierarchy themselves must specialise the actual concept
types in the Upper Common Concept Type Hierarchy.

• The most important layer for meaning negotiation is the Lower Common
Ontology (LCO). This is where the target agenda as represented by the
UCO and the (often widely differing) organisational interpretations need
to be aligned, and the most relevant conceptualisations for the next
version need to be selected. The alignment is done by negotiation
between the CDE and the (relevant) DEs.

2.2.3 Process

In DOGMA-MESS, ontology engineering is divided in several versions,
whereby each version has a part of the domain as its focus. At the beginning
of each version, the CDE defines templates that best capture the focus
interests of that moment. They are described using concepts from the UCO
type hierarchy. When the templates are ready, the CDE assigns tasks to the
DEs, asking them to define their organisational specialisations. The DEs
build these definitions from concepts in their organisational hierarchy. They
can manipulate their hierarchy as they see fit, as long as it specialises the
UCO hierarchy. The result of this step is divergence of knowledge. In order
to obtain the necessary convergence, the CDE and the DEs perform meaning
negotiation on relevant differences. The resulting agreement is stored in the
LCO. Any disagreement is left as an organisational difference to be tackled
in the next version. This last step marks the end of a version, and all relevant
knowledge to be retained is moved to the first step of the next version.

10. Ontologising Competencies in an Interorganisational Setting 273

3. EXPERIENCES

In this section we report on the ontology elicitation sessions we have
carried out in the bakers’ domain using our approach and tools.

3.1 Editing and browsing

The layered and role-based approach of DOGMA-MESS allows the
communities to create and maintain their domain description in small,
understandable chunks, or units of knowledge (e.g., templates). As a result,
we were able to provide several ways of targeted editing and browsing
functionalities configured for each particular type of user role.

3.1.1 Core Domain Expert (CDE)

The CDE manages the common part in his domain, i.e., the Upper
Common Ontology. He does this by browsing and editing his common types
in the upper common concept type hierarchy and his templates in the UCO.
Figure 10-2 illustrates the introduction of a new term in the upper common
ontology, which involves both editing and browsing.

Browsing the type hierarchy: The CDE browses the upper common
type hierarchy by scrolling through a drop-down box. The hierarchy level of
a type is indicated by the indentation, where higher-level types are preceeded
by less white space. The abstract type ‘T’ is always at the top of the type
hierarchy. The use case type hierarchy contained about 200 concept types
and contained only single inheritance. Note that the used approach might
prove cumbersome with larger hierarchies or those with multiple inheritance.

Introducing a new term: This activity includes language grounding and
lexical disambiguation by articulating a term and setting its genus (e.g. add
“oven” and make it a subtype of “tool”). For editing the type, one selects the
term for the type one will edit from the scroll-down box, and either (i)
renames the type; (ii) rehooks the type to another supertype; (iii) creates a
new subtype below the selected type by typing the term for the new type; or
(iv) removes the selected type. Removing a type is currently only possible if
it is a leaf in the hierarchy.

Logging the changes: When the CDE has finished editing, a new version
is created and the change log is recorded in which he can annotate his
change with some plain text comment. This comment will help him (and
others) to understand and track all changes to the type hierarchy.

274 Chapter 10

Figure 10-2. Editing the type hierarchy5

Managing templates: The CDE can browse and edit the templates that
are used in his domain. Browsing is done by showing the CDE a list of the
templates in his domain, described by metadata (including author, title, date,
and comments). By clicking on one of these templates (or by creating a new
one), the CDE enters the edit screen, which is partially displayed in Figure
10-3. In this step, he applies a concept type by specifying it with differentiae.
When he commits a new template, an application dependency between the
template and the concept is defined (De Leenheer et al., 2007; pp. 42).

The top part of Figure 10-3 displays the template in a visual format. The
edit options are displayed at the bottom. From the first drop-down box, the
CDE first selects a concept, which corresponds to a concept in the depicted
graph. He then chooses one of three actions: (1) replace the selected concept
by another concept from the type hierarchy (in his domain), (2) add another
differentia by selection of a relation and a concept from the type hierarchy,
or (3) remove the concept type from the template. He can then save his
changes by providing a name for the template, adding some change
comments and pressing the save button (not displayed in this figure).

5 All images used in this chapter display content as it was produced in the use case. We chose

to keep the original Dutch labels in order to preserve authenticity and nuance. We will
explain figures by an English equivalent term, followed by the Dutch representation in
between brackets. In this example, the CDE is changing the supertype of Oven (“Oven”)
to Equipment (“Apparatuur”).

10. Ontologising Competencies in an Interorganisational Setting 275

Figure 10-3. Editing the subtask (“Deelhandeling”) template6

Managing common definitions: The CDE can manage the common
definitions (based on templates and the organizational definitions) in the
LCO. The steps are similar to those of the managing templates activity.

3.1.2 Domain Expert (DE)

The Domain Expert manages his local organisational ontology. He does
this by browsing and editing his organisational types (similar to the CDE
activities) in the Organisational Type Hierarchy and his specialisations in the
Organisational Specialisations.

6 The displayed template is the Subtask template (“Deelhandeling”), which states that a

Subtask (“Deelhandeling”) results in (“resulteert_in”) a certain Product, which has a
quality demand (“kwaliteitseis”) of Quality[0] (“Kwaliteit[0]”). The Subtask is performed
by (“uitgevoerd_door”) a certain Person (“Persoon”), uses (“gebruikt”) a certain Material
(“Materiaal”), a certain Device (“Apparatuur”), a certain Equipment (“Gereedschap”) and
a kind of Raw material (“Grondstof”). The Subtask (“Deelhandeling”) itself has a quality
demand (“kwaliteitseis”) of Quality[1] (“Kwaliteit[1]”).

276 Chapter 10

Managing definitions: A typical DE activity is building an
organisational definition based on a certain template. The editing of a
definition is always constrained by the template as this action corresponds to
the micro-process specialisation. For instance, if the template specifies a
concept “Actor” at a certain position, it is illegal to fill this position with an
“Object” type such as “Oven.” This constraint is enforced using the
conceptual graphs projection operator (Sowa, 1984). We found that it is
easiest for the user to constrain editing to allowed choices.

Figure 10-4. Definition of “Fonceren” as a specialisation of the subtask template7

As definitions are always based on a template (created and maintained by
the CDE), we decided to present both the information from the template

7 “Fonceren” is a kind of Subtask whereby the inside of a baking form is coated with dough as

a preparatory process of the baking itself. The inner blue boxes represent the specialized
types of the more general, outer white template types. For instance, the quality demands
(“kwaliteitseis”) for the resulting (“resulteert_in”) Coated baking form
(“Beklede_Bakvorm”) are the qualities Equal thickness (“Gelijke_Dikte”) and No
airbubbles (“Geen_Luchtbellen”).

10. Ontologising Competencies in an Interorganisational Setting 277

(outer white boxes) and that from the definition-in-edit (inner dark-grey
boxes). We found that this visual clue contributed significantly to
understanding the concepts used in the definition (see Figure 10-4).

3.1.3 Knowledge Engineer (KE)

The Knowledge Engineer assists the other DOGMA-MESS actors by
tutoring them in the system. Furthermore, he analyses the elicited knowledge
artefacts, which are not yet full-fledged ontological commitments. For
meaning analysis, the Knowledge Engineer has two main tools at his
disposal: the DOGMA-MESS8 Web front-end we described above, and the
DOGMA Studio Workbench9, which is a plug-in-based architecture (see
section 3.4).

Searching graphs: Using the Web front-end, the KE constructs a query
graph (which is analogous to defining a template), which is then matched
against all available knowledge artefacts (including type hierarchies,
templates and definitions) in the ontology server. This functionality allows
the KE to detect patterns. For instance, a query could search for all subtask
definitions that are performed by a baker using an oven.

Meaning analysis: For further meaning analysis, the KE can rely on the
DOGMA workbench, more particularly the T-Lex tool. The main view of
this tool is depicted in Figure 10-5. The left pane (LexonBase Explorer)
shows an extensive list of contexts identifiers, which represent the multiple
contextualisations. The KE selects one of these contexts in order to zoom in
on the knowledge collected inside. The tree below the context displays all
terms present in the context. The bottom right pane (Lexons) lists all lexons
in the currently selected context. The top right pane (T-Lex Lexon Base
Browser) shows the NORM-tree browsing approach (Trog et al., 2006). The
KE selects one of the concepts in the context as the root of the tree. Starting
from that root, he can browse further by exploring all the relations
connected. The advantage of this approach is the constant availability of
local context: all relations connected to the concept in focus are always
nearby and in view. Concepts can be displayed more than once, but they are
marked in grey to identify them as duplicates.

Furthermore, the KE can also axiomatise definitions by adding semantic
constraints (e.g., uniqueness and value constraints) to the paths present in the
NORM-tree.

8 http://www.starlab.vub.ac.be/website/dogma-mess
9 http://www.starlab.vub.ac.be/website/dogmastudio

278 Chapter 10

Figure 10-5. T-Lex, in-depth semantic functionality for the KE

3.2 Reusing existing consensus

In this section, we show how the DOGMA-MESS system handles
previously existing consensus, and we take a look at the estimated cost of
using the system.

3.2.1 Reusing consensus

By means of upward spiral knowledge creation, DOGMA-MESS aims to
enhance the potential for relevant interorganisational knowledge creation in
an efficient way through incentive templates. Consensus reuse is an essential
criterion in order to realise the scalability of ontology engineering. We can
define reuse as

the repeated use of an artefact in different situations, with or without
making adaptations to it.

10. Ontologising Competencies in an Interorganisational Setting 279

We discuss three prominent ways of knowledge reuse in DOGMA-
MESS, viz. reuse of the lexon base, reuse of an existing upper ontology, and
reuse of existing organisational schemas and organisational knowledge.

From the lexon base: In DOGMA, lexons are stored in an extensive
lexon base, which is holds intuitive plausible conceptualisations of a domain.
The lexon base is intended as a large collection of highly reusable pieces of
knowledge (the lexons). These can be used (and reused) in any ontology and
in any commitment to an ontology. These lexons can be collected from any
input source, such as existing text documents or standards.

From the upper ontology: In the Meta-Ontology (MO) we identify two
cases of reuse of existing consensus, viz. metaconcept types, and canonical
relations. The MO contains domain-independent concepts, and is used to
assist the CDE in a structural way of thinking about his type hierarchy and
templates. The KE can use these to easily merge and map all collected
concepts to external resources, such as Cyc’s Upper Ontology (Lenat and
Guha, 1990) and SUMO (Niles and Pease, 2001). At this stage, we opted for
an extremely thin layer, containing only five types, namely “T” (the absurd
type), with four subtypes “Actor,” “Object,” “Process” and “Quality.” We
found that for our case these four types are sufficient to guide the CDE. The
canonical relations (e.g., agent of and instrument of) are based on those that
Sowa (Sowa, 1999) identified in Fillmore’s case grammar (Fillmore, 1968).
In the Dutch bakery use case, we provided the CDE with five canonical
relations (consists of, instrument of, quality of, results in, agent of). He
translated these to his own (Dutch) terms and used only these translations in
his templates. This approach forced (1) the KE to determine a relevant set of
relations, (2) the CDE to construct his templates appropriately, and (3) all
DEs to add their knowledge through semantics in concepts, instead of in a
multitude of ad-hoc and ill-defined relations.

We found that it is very important to provide clear metatypes and
relations. In the use case, we provided the CDE with a clear and well-formed
natural language gloss and a few examples (instances) as well. Both glosses
(Jarrar 2005; Jarrar 2006) and examples (Nijssen and Halpin 1989) have
been proven to increase understanding for both KEs and (C)DEs.

From organisational knowledge: Second is the elicitation of
organisational knowledge. Much of the existing consensus in the domain of
our use case can only be found as tacit knowledge (Nonaka and Takeuchi,
1995). This will hold true in other domains as well. DOGMA-MESS
provides the DEs with a structured approach to capture at least a relevant
part of their tacit knowledge, and convert it into a formal (and thus reusable)
representation. DOGMA-MESS can then identify how much of this
knowledge is already agreed upon. Supported by the system (e.g., a
discussion agenda of the most relevant differences), the DEs, supported by

280 Chapter 10

the CDE and if necessary the KE, can then perform meaning negotiation in
order to reach consensus, where consensus is possible and necessary. The
CDE also has to rely on his knowledge and experience, and try to get a
mental view on the consensus in the sea of tacit knowledge in order to
construct the appropriate templates and type hierarchy. In our use case, the
initial UCO type hierarchy was actually reused from another nation-wide
project in the Dutch bakery domain: Flexbase10. To our knowledge, there
was no other (inter)national standard or shared resource available that could
serve in our Dutch bakery use case. Through iteration and evolution of the
templates, we predict that they will evolve into useful knowledge patterns
for the domain. Under traditional circumstances, artefacts that are
constructed as highly reusable tend to be difficult to actually use because of
their generic level. We foresee that the evolved patterns could possible be
used in other domains as well, either as a valid knowledge pattern (e.g., the
subtask pattern might serve as a template in other domains as well), or as a
good source of inspiration (e.g. bakery experts claim that bakery much
resembles other process industries, such as the chemical industry, in many
ways. Parts of the process patterns, for example, might be good starting
points for domain ontologies of these other industries.)

3.2.2 Cost

It is difficult to provide exact details about cost or time spent in our
approach. We did not yet perform measurements related to this issue. Based
on user sessions held in the use case, we estimate that in general DEs can
create the first version of a definition in about 10 to 15 minutes. This
includes the accompanying changes they make to their type hierarchy as
well. The templates are more difficult, as they require more abstract
thinking, but this is offset by far fewer templates than domain definitions
being necessary. The templates used in the Dutch bakery domain (five
different ones) were crafted in an extensive afternoon session, and required a
second such session to complete them. They will need several elicitation
iterations before they evolve into actual knowledge patterns.

The process of negotiation in order to reach a common agreement is
difficult to estimate, as it depends on a number of variables (the number of
differences, the complexity of the differences, the people involved, etc.). We
found that it is best to keep the discussion fixed on one difference at the
time, and limited in time (e.g. by using a timer and an objective mediator).
Any disagreement after that period must then first be solved at the
organisational level, not at the common level. This disagreement can then be
tackled in a next version (using an updated type hierarchy and templates).

10 http://www.flexbase.nl/

10. Ontologising Competencies in an Interorganisational Setting 281

The structured approach of DOGMA-MESS assists the (C)DEs in how to
define their conceptualisations. It is not necessary to introduce a separate
alignment process alongside the articulation, as any definition is inherently
aligned with the template. The KE can perform mapping at the MO level and
merging of OOs is done in the LCO through meaning negotiation.

3.3 Ontology evolution

The Dutch bakery vocational domain in our use case is only dynamic to a
lesser degree. It does change, but not as fast as for instance the IT domain.
On the other hand, many parties (e.g. educational institutes) are involved
with a vested interest in their own organizational definitions, so many
versions can be necessary before stable definitions have been obtained.
Thus, in general it is very important to make sure that maintenance (and thus
evolution) is manageable. This is a constraint for any system or
methodology, and it should be a constraint from the start – not simply when
evolution is noticed for the first time. We acknowledge that evolution is very
important and continuously present in our (and any other) domain, especially
when the domain is shaped (and formally described) by an
interorganisational community of users.

In collaborative ontology engineering, multiple stakeholders have
multiple views on multiple ontologies. Hence, a viable methodology requires
supporting domain experts in gradually building and managing increasingly
complex versions of ontological elements and their converging and
diverging interrelationships. DOGMA-MESS adopts this principle by
implementing the upward spiral model we discussed in Chapter 5. This
naturally requires the appropriate versioning support. In this section, we
discuss the evolution support in DOGMA-MESS in terms of the different
activities from the single user and collaborative ontology evolution process
model in Chapter 5.

Change representation: In (De Leenheer et al., 2007), we define a non-
exhaustive list of change operators, hence a change (request) is represented
by a sequence of change operations. Each user is granted change permissions
based on his role profile, as we explained in De Leenheer and Meersman
(2007). A user can also request a change to other artefacts, but these have to
be validated by the authorised person. For instance, a domain expert is only
responsible for an organisational definition that specialises the template
provided by the CDE. However, at any time, he can submit and argue for a
template change request to the CDE, based on his experiences with (trying
to) specialise the template.

Prioritisation and change request types: The many dependencies
between artefacts in the ontology require dependent artefacts to be updated

282 Chapter 10

in view of the changes in the artefacts they depend on. A prioritisation
scheme for mapping the change requests, in order to decide which change
should be implemented first, is based on the role of the change requester. For
instance, the specialisation dependency states that an organisational
definition (e.g., “Fonceren”) must at all times be a specialisation of its
template (e.g., subtask). A change (on request) made by the CDE in a
template has priority over the specialisation by the DE. Hence, whenever a
template changes, all the DEs are notified (push-based) that they have to
change their specialisation dependent organisational definitions (in
response).

Impact analysis: Currently, the impact of a change is analysed simply by
counting the dependent artefacts using the context dependencies, and the
current prioritisation schemes. Even if a change has severe consequences for
some dependent artefact in the ontology, the priority of the change will
influence this decision. We plan to extend this functionality.

Versioning support: In DOGMA-MESS, all versions of the ontologies
are persistently stored in DOGMA Server, and tagged with appropriate meta-
data for identification, and for describing the how, who, and when of the
version. We learned that it is very important to provide (and encourage) the
end-user with commenting functionality. A good description of why a new
version was created avoids future insight questions, such as the familiar
‘Why did we/they do this again?’ Even if the new version is automatically
generated (e.g., an automatically updated definition caused by a change in
the template and the associated specialisation dependency), it is advisable to
include a pre-defined system comment to assist the (C)DEs.

Through logging the change information (the dependencies and the
operators), we avoided the difficult problem of having to induce them
between versions. This kind of structured information allows highly granular
version comparison and merging functionalities. At the time of the
CODRIVE use case, comparison and merging functionalities for these
processes were not yet available. Currently, we are extending the DOGMA-
MESS interfaces in other real-world case studies to incorporate this
convergence support.

An important experience was the difficulty that the DEs reported during
version iteration. Our initial idea was to start a version iteration with the
UCO type hierarchy and templates, and that these would be blocked during
the entire iteration. They could only be updated in the next iteration. This
resulted in the complaint that the DEs were not satisfied with certain parts of
the UCO type hierarchy, but that they had to wait until the end of the version
before something could be done. While this discrete versioning setup,
including a negotiation phase at the end of every version in order to resolve
the differences, was our goal, we concluded that it is important to provide

10. Ontologising Competencies in an Interorganisational Setting 283

more freedom for the (C)DEs. So, while the process itself is globally discrete
(version iterations), the micro-processes (updating a definition, change to the
UCO type hierarchy, etc.) should be perceived as continuous by the (C)DEs
in order to obtain a stronger feeling of freedom.

3.4 Tool support

The DOGMA-MESS approach requires a lot of system support. Some of
the necessary tools were available; others were built or adapted to fit in the
scope of the use case. In the following subsections we present the used tools,
and our lessons learnt.

3.4.1 Web application

For the general workflow of DOGMA-MESS, we opted for a zero-install
approach in the form of a Web-based application (see figures 2, 3 and 4 for
some examples). While this kind of platform used to provide rather limited
client-side smoothness, the current trends with JavaScript (such as AJAX11)
may allow a richer end-user experience. The zero-install was a necessity for
us, as in many cases (C)DEs are limited in installation possibilities
concerning their on-the-job computer systems. The Web-based approach
avoids installation trouble and paves the way for low-complexity ontology
engineering. In this Web-based application, we identified the different user
roles (KE, CDE and DE) with a clear and continuously present icon in order
to enhance recognition.

Our main reason to build this tool (supporting the DOGMA-MESS
methodology) was the fact that there was no other proper workflow support
available. However, in order to avoid too much development work, we
decided to link the Web application with several other tools (for input,
output, analysis and reasoning) to obtain the necessary functionalities.

3.4.2 Input

We initially chose the conceptual graph editor CharGer (Delugach, 2001)
as an input tool for the CDE. Using this tool, the CDE could build the UCO
type hierarchy and the necessary templates, and then upload them into
DOGMA-MESS. At that time, CharGer did not have a proper layout
algorithm integrated. It quickly became clear that the richly populated UCO
type hierarchy was beyond proper manual management as Charger’s visual
representation looked like a jungle of concepts and line crossings. To solve

11 http://en.wikipedia.org/wiki/AJAX_(programming)

284 Chapter 10

this, we opted for an indented text format, in which the hierarchy depth is
indicated by the indentation. Although this is a rather simple approach, it
proved efficient and easy to use. As any text editor was sufficient for editing,
this method was an advantage concerning client-side requirements as well.
In the end, we incorporated this approach in the Web application.

3.4.3 Output

As the figures used in this chapter demonstrate, we also included a
visualisation component in the Web application. The layout functionalities
are provided by AT&T’s GraphViz12, a tool that provides several algorithms
with numerous configuration parameters for graph lay outing. Thanks to the
domain-specific terminology in the graphs, they are easily understood by
(C)DEs. They also provide an immediate overview of the knowledge they
represent, even for people who are not accustomed to working with graphs.
In our use case, we did not encounter any direct opposition or difficulties in
using them. However, we are also considering a more traditional (and
omnipresent) spreadsheet-like approach as well as a natural language text
representation as alternatives in the system. These will result in an even
lower complexity, and a quicker way of capturing knowledge. We will keep
the graph visualisation in future versions (because of its clarity and overview
advantages), but we will add hide/show functionalities in order to provide
(C)DEs with the freedom of choice.

3.4.4 Advanced

For the more advanced tasks of the Knowledge Engineer, there is a
plethora of tools available (Gómez-Pérez et al., 2003), each one of them with
its own strong advantages and theoretical backgrounds. Because of the
DOGMA foundation of DOGMA-MESS, we incorporated the DOGMA
Studio Workbench (see Figure 10-5). It provides the KE with advanced
contextual browsing facilities (described in section 3.1.3), as well as support
for detailed semantic constraints. It is based on the Eclipse Rich Client
Platform13, which provides a flexible plug-in architecture. A very important
aspect is interoperability and grounding into formats and standards used by
others. The DOGMA Studio Workbench can perform conversion to and
from external formats, such as RDF (Miller and Manola, 2004) and OWL
(van Harmelen and McGuinness, 2004) in order to provide proper
operationalisation.

12 http://www.graphviz.org/
13 http://wiki.eclipse.org/index.php/Rich_Client_Platform

10. Ontologising Competencies in an Interorganisational Setting 285

3.5 Storage and retrieval

The DOGMA-MESS methodology we applied in our use case imposes a
number of requirements on the back-end. A first requirement is high
scalability, as the method was developed with a large community of users in
mind. A second requirement is the need for multi-synchronous collaborative
editing, where multiple users can perform their part synchronously. The third
(and last) requirement concerns the reasoner, which must be capable of
handling all sorts of context dependencies.

DOGMA-MESS has been developed as an Apache Tapestry14 Web
application. It connects to the DOGMA Studio Server, which is a JBoss15
J2EE application, backed by a PostgreSQL16 relational database. The
database hosts the relational model of the DOGMA framework, and the
J2EE application layer provides the functional model. As one of the
advantages of DOGMA is its scalability (Spyns et al 2002), we had to
provide it with sufficient scalability support on the technical side. Relational
databases have a long-proven track record to support this. Other storage
approaches, such as XML databases and triple stores are currently growing
in popularity and have proven to withstand large data sets as well (Lee
2004). At this point however, we chose the more traditional approach
because of its longer history of scalability. The JBoss Application Server is
widely used in industrial applications, and as such it has proven itself.
Thanks to the J2EE aspect of the application, it is relatively easy to connect
to the server (e.g., via Web services) and make use of the data. DOGMA-
MESS stores and retrieves all its data using the DOGMA Studio Server and
the DOGMA Studio Workbench provides KE access to the available content.

A very important aspect of using a client/server architecture is the
scalable support for collaborative environments. Via this approach, we can
avoid the problem of different users each having a different version of the
ontology in some XML format. All content is captured on the server,
properly versioned, and thoroughly described in terms of context and other
dependencies. At all times, the server monitors all changes and updates in
order to detect possible conflicts.

As a reasoner, we use the Prolog+CG engine17. This reasoner provides all
the potential of Horn clause logic available in Prolog, and has incorporated
conceptual graphs as first class citizens. We use this reasoner to validate the
context dependencies using conceptual graphs operation. For instance, to
check whether a specialisation is still in line with its template, we call

14 http://tapestry.apache.org/
15 http://labs.jboss.com/portal/jbossas
16 http://www.postgresql.org/
17 http://prologpluscg.sourceforge.net/

286 Chapter 10

Prolog+CG and use its conceptual graph’s projection operation. There are
many other conceptual graph reasoners available, but we chose Prolog+CG
(Christiaens and de Moor 2006) because (1) it allows easy integration in
DOGMA Studio because of its Java implementation, (2) it includes Prolog,
which provides a lot of logic processing power and (3) it includes the
necessary conceptual graph operators (e.g., projection). In the use case setup,
we had a single Prolog+CG engine, which required the relevant data in-
memory. We did not experience performance issues, but we foresee that
larger data sets might cause problems in large comparison operations (e.g.,
matching of a query against all graphs in the server). These can be tackled by
using more than one engine (on different physical servers).

We tried to use as much open-source software as possible, both for legal
reasons as well as integration aspects. In the case of Prolog+CG, this open-
source aspect and good communication with the maintainer of the software
resulted in an improved and faster implementation of the reasoner, which
was a benefit for both parties.

4. CONCLUSION

In this chapter we presented our experiences in the CODRIVE Dutch
bakery domain. We described the additional difficulties that the
interorganisational setting brings, such as the capturing of tacit knowledge,
meaning divergence and context dependencies, and the need for co-evolution
with the community of practice. We presented DOGMA-MESS, our answer
to dealing with these kinds of complexity. We then described our
experiences with this approach, related to the theoretical chapters in this
book. These experiences show that it is difficult, but feasible to empower
non-knowledge engineers in ontology management. A very important aspect
is evolution, which needs to be thoroughly assisted by proper system
support, especially in interorganisational settings, where the ontology needs
to co-evolve with its community of practice.

We can conclude that there are two benefits to involving the community
stakeholders in the ontology engineering: (1) the collected input represents
correct and accepted knowledge and (2) the input results from and creates
involvement and ownership of all stakeholders. An ontology that is created
by a small group of knowledge engineers in splendid isolation and then
forced into reality and implementation has little chance of acceptance.

10. Ontologising Competencies in an Interorganisational Setting 287

ACKNOWLEDGEMENTS

We would like to thank Luk Vervenne (Synergetics) for the valuable
discussions about theory and case, Hans Wentink (NBC) as the Core
Domain Expert in our case, and all the helpful Domain Experts from the
Netherlands. The research described in this chapter was partially sponsored
by EU Leonardo da Vinci CODRIVE project B/04/B/F/PP-144.339, by the
DIP EU-FP6 507483 project and by the Brussels-Capital Region (IWOIB
PRB 2006).

REFERENCES

Banerjee, J., Kim, W. Kim, H., and Korth., H. (1987) Semantics and implementation of
schema evolution in object-oriented databases. Proc. ACM SIGMOD Conf. Management
of Data, 16(3), pp. 311–322

Christiaens S, de Moor A. (2006). Tool interoperability from the trenches: the case of
DOGMA-MESS. In: Proc. of the 1st Conceptual Structures Tool Interoperability
Workshop (CS-TIW 2006) at the 14th International Conference on Conceptual Structures,
Aalborg, Denmark

Delugach H.S. (2001) CharGer: A Graphical Conceptual Graph Editor. Workshop on
Conceptual Graphs Tools at the 9th International Conference on Conceptual Structures,
2001, Stanford University

De Leenheer P., de Moor A. (2005). Context-driven disambiguation in ontology elicitation. In
P. Shvaiko and J. Euzenat (eds), Context and Ontologies: Theory, Practice, and
Applications. Proc. of the 1st Context and Ontologies Workshop, AAAI/IAAI 2005,
Pittsburgh, USA, pp 17–24

De Leenheer P., de Moor A., Meersman R. (2007). Context dependency management in
ontology engineering: a formal approach. Journal on Data Semantics VIII, LNCS 4380,
Springer, pp 26–56

De Leenheer, P. and Meersman, R. (2007) Towards Community-based Evolution of
Knowledge-intensive Systems. In Proc. of the 6th Int’l Conf. on Ontologies, DataBases,
and Applications of Semantics (ODBASE 2007) (Vilamoura, Portugal), LNCS, Springer

de Moor A. (2005). Patterns for the Pragmatic Web. In Proc. Of the 13th International
Conference on Conceptual Structures, Kassel, Germany, pp 1–18

de Moor A., De Leenheer P., Meersman R. (2006). DOGMA-MESS: A meaning evolution
support system for interorganizational ontology engineering. In: Proc. of the 14th
International Conference on Conceptual Structures, Aalborg, Denmark. LNCS 4068, pp
189–203

Diaz, A. (2005) Supporting Divergences in Knowledge Sharing Communities. PhD Thesis,
Univesité Henry Poincarè, Nancy I, France

Edgington T, Choi B, Henson K, Raghu TS, Vinze A (2004). Adopting ontology to facilitate
knowledge sharing. Communications of the ACM, 47(11), pp 217–222

Fellbaum C. (1998). Wordnet: An Electronic Lexical Database (Language, Speech and
Communication). The MIT Press

Fillmore C.H. (1968). The case for case. In: Bach and Harms (eds), Universals in linguistic
theory, Holt, Rinehart and Winston, New York

288 Chapter 10

Gómez-Pérez A., Corcho O., Fernández-López M. (2003). Ontological Engineering. Springer-

Verlag, New York, LLC
Jarrar, M., Demey, J., Meersman, R. (2003) On reusing conceptual data modeling for

ontology engineering. Journal on Data Semantics 1(1):185–207
Jarrar M. (2005). Towards methodological principles for ontology engineering. PhD Thesis,

Vrije Universiteit Brussel.
Jarrar M. (2006). Towards the notion of gloss, and the adoption of linguistic resources in

formal ontology engineering. In: Proceedings of the 15th International World Wide Web
Conference, WWW2006. Edinburgh, Scotland. May 2006. ACM, 2006

Lee R. (2004). Scalability report on triple store applications.
http://simile.mit.edu/reports/stores/

Lenat D.B., Guha R.V. (1990). Building Large Knowledge-based Systems: Representation
and Inference in the Cyc Project. Addison-Wesley, Boston, Massachusetts

Lenat D.B. (1998). The dimensions of context-space. Cycorp technical report
(http://www.cyc.com/doc/context-space.pdf)

Meersman R. (2001). Ontologies and Databases: More than a Fleeting Resemblance. In:
d’Atri, A., Missikoff M. (eds), OES/SEO 2001 Rome Workshop. Luiss Publications

Miller E., Manola F. (2004). RDF primer. W3C recommendation,
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/

Nijssen G.M., Halpin T.A. (1989). Conceptual schema and relational database design: a fact
oriented approach. Prentice Hall, Australia

Niles I., Pease A. (2001). Origins of the Standard upper Merged Ontology. In: Working Notes
of the IJCAI-2001 Workshop on the IEEE Standard Upper Ontology, Seattle, Washington,
August 6

Nonaka I. and Takeuchi, H. (1995). The knowledge-creating company: how Japanese
companies create the dynamics of innovation. Oxford University Press

Polanyi, M. (1967) The Tacit Dimension, Garden City, NY, Double Day
Reiter R. (1984). Towards a logical reconstruction of relational database theory. In: Brodie

M., Mylopoulos J., Schmidt J. (eds) On conceptual modeling, pp 191–233
Sowa, J.F. (1984). Conceptual structures: information processing in mind and machine.

Addison-Wesley, Reading, Massachusetts
Sowa J.F. (1999). Knowledge Representation: Logical, Philosophical, and Computational

Foundations, Brooks Cole Publishing Co., Pacific Grove, CA, ©2000. Actual publication
date, 16 August 1999.

Spyns P., Meersman R., Jarrar M. (2002). Data modeling versus ontology engineering.
SIGMOD Record, 31(4), pp 12–17

Trog D., Vereecken J., Christiaens S., De Leenheer P., Meersman R.. T-Lex: A role-based
ontology engineering tool. In: Meersman R, Zahir T, Herrero P (eds), On the move to
meaningful internet systems 2006: OTM 2006 Workshops (ORM06), LNCS 4278,
Springer-Verlag, pp 1191–1200

van Harmelen F., McGuinness D.L. (2004). OWL Web Ontology Language overview. W3C
recommendation. http://www.w3.org/TR/2004/REC-owl-features-20040210

ABOUT THE EDITORS

Martin Hepp is a professor of computer science and a senior researcher
at the Digital Enterprise Research Institute (DERI) at the University of
Innsbruck in Innsbruck, Austria, where he leads the research group
“Semantics in Business Information Systems.” He created eClassOWL, the
first industry-strength ontology for products and services and is currently
working on using Semantic Web services technology for business process
management. Before joining DERI, he was an assistant professor of
computer information systems at Florida Gulf Coast University, Fort Myers
(FL) and a visiting scientist with the e-Business Solutions Group at the IBM
Zurich Research Laboratory. Martin holds a master’s degree in business
management and business information systems and a Ph.D. in business
information systems from the University of Würzburg, Germany.

Pieter De Leenheer is a researcher at the Semantics Technology and
Applications Research Laboratory (STARLab) at the Vrije Universiteit
Brussel in Brussels, and holds a MSc degree in computer science from the
the same university. At the time of writing, he is finishing his PhD on
community-based evolution of knowledge-intensive systems, and is
validating his work in the EU projects Prolix and CoDrive. As part of the
European project DIP, he developed methods and tools for the management
of ontologies supporting Semantic Web services. Pieter authored several
publications in various international journals and conference proceedings.
He is also teaching assistant of Robert Meersman, and a guest lecturer of
database theory, (Web) information systems, and Semantic Web languages
at the Vrije Universiteit Brussel and the University of Hasselt, Belgium.

Aldo de Moor is the owner of CommunitySense, a research consultancy
firm in Tilburg, the Netherlands, which focuses on information and
communication systems development for collaborative communities. Before
starting CommunitySense, he was a senior researcher at the Semantics
Technology and Applications Research Laboratory (STARLab), Vrije
Universiteit Brussel, Belgium. Prior to that, he was an assistant professor at

290 About the Editors

Infolab, Dept. of Information Systems and Management, Tilburg University,
the Netherlands. Aldo holds a Ph.D. in information management from
Tilburg University. Aldo's research interests include the evolution of virtual
communities, communicative workflow modeling, argumentation
technologies, language/action theory, socio-technical systems design, and
ontology-guided meaning negotiation. Aldo has been a visiting researcher at
the University of Guelph, Canada, and the University of Technology,
Sydney, Australia. Aldo has been program co-chair of the International
Conference on Conceptual Structures, the Language/Action Perspective
Working Conference on Communication Modeling, and the Pragmatic Web
Conference. He has published widely and been involved in many projects
related to the analysis and design of information systems for collaborative
communities.

York Sure is a senior researcher at SAP Research in Karlsruhe, where he
is working on the Internet of Services and semantic technologies. Before
joining SAP, York was an assistant professor at the institute AIFB of the
University of Karlsuhe, where he gave lectures on Semantic Web and
computer science at both graduate and undergraduate level. While at the
AIFB, he was project leader for the EU IST FP6 Integrated Project SEKT,
the EU IST FP6 Thematic Network of Excellence Knowledge Web, and the
international project “Halo — Towards a Digital Aristotle.” York graduated
in industrial engineering in 1999 and received his PhD in computer science
in May 2003. From June to September 2006, he was a visiting assistant
professor at Stanford University. In 2006, York was awarded the IBM
UIMA Innovation Award and in 2007 the doIT Software Award.

INDEX

Abstract Mapping Language (AML), 193–
195, 201, 203

Accessibility, 27, 29, 36, 152
Adaptive User Interface, 27
Algebraic operators, 43
Alignment, 18, 20, 77, 132, 156, 159–166,

177–204, 266, 272, 281
Analogy method, 210–213, 221–223

Business perspective, 207–224

Cognitive Studies, 49
Collaboration Support, 78, 167, 285
Collaborative ontology engineering, 60,

132, 152–161, 165, 169, 268, 281
Communities of use, 132–133, 139, 164–

166, 170, 266, 269, 281, 285
Community, 6, 8, 60, 65, 68, 78, 132–138,

153–157, 160–169, 208, 212–213,
223–224, 266–269, 281

Conceptual dynamics, 8
Conceptual modeling, 5, 10–12, 15, 215,

217–218
Configurable User Interface, 41–42
Conflict management, 146, 151, 163–164
Consensus, ix, 5, 132, 156, 161, 164, 167,

233, 266–267, 278-280
Context matching, 181–182
Context, 133–135, 156–158, 166, 193–194,

269, 277
Contextual fringe, 47, 52
Contextualisations, 136, 161, 270, 277
Controlled vocabulary effect, 5, 7, 12–13
Correspondences, 179, 180, 184, 187–194,

201
Cost drivers, 145, 208–224
Cost estimation, 19–28, 98, 145, 210–213,

221–223
Cost models, costs. See ontology cost

models.
Costs, costs and benefits , 11, 19, 145,

207–224

Customization, 25–28, 36, 41, 43, 49–55,
213, 222, 224, 235

Customizing ontologies, 51–54

Data individuals, 6
Data integration, 178, 181–182, 202
Data mediation, 190, 192, 198, 200–201
Data schema evolution, 132, 140, 141, 146,

148, 151, 164
Database mappings, 260–262
Database schema import, 259–260
Databases, 18, 90–106, 114–124, 140, 181–

185, 259–262
Description logics, 76, 92, 100–107, 113,

149, 170
Disjunctive datalog programs, 101
DL reasoning, 18, 90, 103, 105, 113, 117
DOGMA, 268–269
DOGMA-MESS, 170, 268–273, 277–286

eClassOWL, 14–15, 289
Effects of ontologies, 10–16
Effort, 8–10, 15, 17, 19, 37–38, 48, 51,

137, 144–145, 211–212, 216–224
Entity-relationship model, 5, 16
Expressiveness, 8, 18, 45, 89, 115–118,

179, 262

Faceted navigation, 45–47
Filter operation, 52
F-Logic, 5, 62, 64, 72–76, 81–82, 85, 254,

257, 261, 263
Formal account, See semantic account.

Graph transformation, 163–164
Graphical user interface (GUI), 28, 35–37,

80, 84–85, 254
Grounding, 13, 81, 134–135, 138–139,

156, 238, 243, 273, 284

Human computer interaction (HCI), 16,

25–32, 41, 55

292 Index

ICD-10, 17
Import function, 35
Incentive conflicts, 19
Individuals, 6, 8, 12, 15, 64, 100, 104–105,

179–180
Information integration, 258–262
Information sources, 215, 243, 246
Intellectual property rights, 19
Interaction, 25–31, 55, 114, 167

user interaction, 38–46
with human minds, 16–17

Knowledge base(s), 4, 6, 15, 37, 64, 100–

105, 116–120, 257, 262
Knowledge organization system (KOS), 4,

6–8, 15, 17
Knowledge representation, 12, 31, 105,

123, 132, 164, 172, 248

Lexical disambiguation, 135–136, 273
Lexical enrichment, 10, 13
Linguistic grounding. See lexical

enrichment.
Logical inconsistencies, 16

Mappings, 11, 39, 73, 77, 155, 179, 195
Meaning analysis, 277
Meaning conflicts, 137–139
Meaning consensus reuse, 278
Meaning negotiation, 132–133, 156, 166–

167, 266–269, 272, 280–281, 290
Mediators, 106, 178, 189, 238–240

Natural language grounding, 135–136. See

also lexical enrichment.
Network externalities, 19

OntoClean, 12
ONTOCOM, 208–210, 214–224
Ontological commitment, 5, 9–10, 18, 137–

138, 277
Ontological individuals, 6. See also

individuals.
Ontology alignment, 18, 20, 77, 132, 156,

159–161, 165–166, 177–204, 266,
272, 281

Ontology applications, 79, 136, 181, 233–
243, 246

Ontology change management, 133, 152,
162

Ontology change operators, 139–148, 160–
164, 281

Ontology cost models, ontology costs,
208–211. See also cost models.

Ontology debugging, 71–75, 149–150,
255–256

Ontology development tools, 60–74
Ontology divergence, 133–139, 155–156,

165–166, 281, 286
Ontology economics, 208–217. See also

costs and benefits, incentive conflicts,
resource consumption.

Ontology elicitation, 132–138, 155–158,
166, 266–273, 279–280

Ontology engineering costs, 209–214. See
also costs and benefits, resource
consumption.

Ontology evolution, 17–18, 77, 86, 132–
134, 140–152, 163–170, 181–182,
216, 253–257, 281–283

Ontology learning, 17, 237
Ontology matching, 178–185, 193–197,

204
Ontology repositories , See repository.
Ontology reuse, 26, 31, 51, 168, 216, 220,

223
Ontology validation, 149–150, 193, 197,

255
Ontology versioning, See versioning.
OWL, 5–6, 18, 30–33, 37–40, 61–81, 90–

123, 138, 149, 180, 237, 259, 284
OWL-DL, 61–62, 90, 99, 110–112, 123

Protégé, 30–32, 35–40, 63–68, 74–75, 167,

202, 237–238

Query answering, 61–62, 92, 95, 103–105,

118, 122, 181–182
Query processing scalability, 91, 116
Query rewriting, 198

RDBMS (relational database management

systems), 18, 69, 74, 89, 93–95, 116,
120–123, 261

RDF stores, 62, 93–94, 116–117
Reasoner, 9, 14–15, 18, 59–75, 81–82, 90,

92, 95–96, 100–105, 109, 113, 117–
120, 123, 262, 285–286

Relational databases, See RDBMS.
Repository, 18, 61–62, 69, 82–83, 90–94,

98–99, 114, 122–123
Resource consumption, 19

Scalability, 18, 43, 90–91, 116, 138, 267–

268, 278, 285
Semantic account , 5–6, 10, 14–15
Semantic net(s), 5, 14, 47, 148
Semantic Web services, 90–91, 105, 123,

190–192, 231–232, 237–244, 289

Index 293

SKOS, 17

Tacit knowledge, 133, 155, 158, 166, 266–

267, 279–280, 286
Terminology representation, 248
Terminology research, 13–14
Thesauri, thesaurus, 17, 160, 183

UML, 5, 16, 68–70, 74, 84
UNSPSC, 11, 17
Usability, 29, 33, 36, 42
Use cases, 11, 19–20, 46, 54, 82, 90, 121–

123, 170, 215, 246–249, 255, 261,
273, 279–286

Version, versioning, 9, 20, 37, 39, 64, 82,
133, 141, 146, 150–151,164–168,
281–282

Visualization, 16, 31–40, 47–49, 52–55,
65–75, 194, 255

Web Service Modeling Framework

(WSMF), 238
Web Service Modeling Language

(WSML), 5–6, 90, 104–119, 123–124,
127, 168, 203, 205, 238–240, 242–243

Web Service Modeling Ontology
(WSMO), 105–106, 168–169, 232,
237–242

XML schema(s), 4, 6–7, 110, 119, 135, 167

