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FOREWORD 

Dieter Fensel 
DERI, University of Innsbruck 

About fifteen years ago, the word “ontologies” started to gain popularity 
in computer science research. The term was initially borrowed from 

creating the abstractions needed when using computers for real-world 
problems. It was novel in at least three senses: First, taking well-studied 
philosophical distinctions as the foundation for defining conceptual 
elements; this helps create more lasting data and object models and eases 
interoperability. Second, using formal semantics for an approximate 
description of what a conceptual element’s intended meaning is. This helps 
avoid unintended interpretations and, consequently, unintended usages of a 
conceptual element. It also allows using a computer for reasoning about 
implicit facts. And, last but not least, this improves the interoperability of 
data and services alike. Third, ontologies are meant to be consensual 
abstractions of a relevant field of interest, i.e., they are shared and accepted 
by a large audience. Even though the extreme stage of consensus in the form 
of a “true” representation of the domain is impossible to reach, a key goal is 
a widely accepted model of reality; accepted by many people, applicable for 
many tasks, and manifested in many different software systems. 

It comes as no surprise that the idea of ontologies became quickly very 
popular, since what they promise was and is utterly needed: a shared and 
common understanding of a domain that can be communicated between 
people and application systems. It is utterly needed, because the amount of 
data and services which we are dealing with everyday is beyond of what 
traditional techniques and tools empower us to handle. The World Wide 
Web alone has kept on growing exponentially for several years, and the 
number of corporate Web services is vast and growing, too. 

However, the initial excitement about ontologies in the late 1990s in 
academia did not show the expected impact in real-world applications; nor 
did ontologies actually mitigate interoperability problems at a large scale. 

philosophy but quickly established as a handy word for a novel approach of
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Quite obviously, early research had underestimated the complexity of 
building and using ontologies. In particular, an important duality1 had been 
widely ignored: 

1. Ontologies define a formal semantics for information allowing 
information processing by a computer.  

2. Ontologies define a real-world semantics allowing to link machine 
processable content with meaning for humans based on consensual 
terminologies.  

The first part of this duality can fairly easily be addressed by technology: 
by defining formalisms for expressing logical statements about conceptual 
elements and by providing infrastructure that can process it. The second part 
is much more difficult to solve: We have to produce models of relevant 
domains that reflect a consensual view of the respective domain, as 
perceived and comprehended by a wide audience of relevant human actors. 
It is this alignment with reality that makes building and using ontologies 
complex and difficult, since producing an ontology is not a finite research 
problem of having the inner structures of the world analyzed by a single 
clever individual or a small set of highly skilled researchers, but it is an 
ongoing, never ending social process. 

It is thus pretty clear that there will never be such a thing as the ontology 
to which everybody simply subscribes. Much more, ontologies arise as pre-
requisite and result of cooperation in certain areas reflecting task, domain, 
and sociological boundaries. In the same way as the Web weaves billions of 
people together to support them in their information needs, ontologies can 
only be thought of as a network of interweaved ontologies. This network of 
ontologies may have overlapping and excluding pieces, and it must be as 
dynamic in nature as the dynamics of the underlying process. In other words, 
ontologies are dynamic networks of formally represented meaning. 

Ontology management is the challenging task of producing and 
maintaining consistency between formal semantics and real-world 
semantics. This book provides an excellent summary of the core challenges 
and the state of the art in research and tooling support for mastering this task. 
It also summarizes important lessons learned in the application of ontologies 
in several use cases.  

The work presented in this book is to a large degree the outcome of 
European research projects, carried out in cooperation between enterprises 
and leading research institutions, in particular the projects DIP (FP6-
507483), Knowledge Web (FP6-507482),  SEKT (FP6-027705),  and 

                                                      
1 D. Fensel, “Ontologies: Dynamic networks of formally represented meaning,” available at 

http://sw-portal.deri.at/papers/publications/network.pdf 
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SUPER (FP6-026850). From early on, the European Commission had 
realized the enormous potential of ontologies for handling the 
interoperability problems in European business, research, and culture, which 
are caused by our rich cultural diversity. It is now that ontology management 
is ready for large, real-world challenges, thanks to this visionary and 
continuous support. 

Innsbruck, August 2007 Prof. Dr. Dieter Fensel 
Director 
Digital Enterprise Research Institute 
University of Innsbruck 
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Chapter 1 

ONTOLOGIES: STATE OF THE ART, BUSINESS 
POTENTIAL, AND GRAND CHALLENGES 

Martin Hepp 
Digital Enterprise Research Institute, University of Innsbruck, Technikerstraße 21a, A-6020 
Innsbruck, Austria, mhepp@computer.org 

Abstract: In this chapter, we give an overview of what ontologies are and how they can 
be used. We discuss the impact of the expressiveness, the number of domain 
elements, the community size, the conceptual dynamics, and other variables on 
the feasibility of an ontology project. Then, we break down the general 
promise of ontologies of facilitating the exchange and usage of knowledge to 
six distinct technical advancements that ontologies actually provide, and 
discuss how this should influence design choices in ontology projects. Finally, 
we summarize the main challenges of ontology management in real-world 
applications, and explain which expectations from practitioners can be met as 
of today. 

Keywords: conceptual dynamics; conceptual modeling; costs and benefits; information 
systems; knowledge representation; ontologies; ontology management; 
scalability; Semantic Web 

1. ONTOLOGIES IN COMPUTER SCIENCE AND 
INFORMATION SYSTEMS 

Within less than twenty years, the term “ontology,” originally borrowed 
from philosophy, has gained substantial popularity in computer science and 
information systems. This popularity is likely because the promise of 

purposes: Achieving interoperability between multiple representations of 
reality (e.g. data or business process models) residing inside computer 
systems, and between such representations and reality, namely human users 
and their perception of reality. Surprisingly, people from various research 

ontologies targets one of the core difficulties of using computers for human
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communities often use the term ontology with different, partly incompatible 
meanings in mind. In fact, it is a kind of paradox that the seed term of a 
novel field of research, which aims at reducing ambiguity about the intended 
meaning of symbols, is understood and used so inconsistently. 

In this chapter, we try to provide a clear understanding of the term and 
relate ontologies to knowledge bases, XML schemas, and knowledge 
organization systems (KOS) like classifications. In addition, we break down 
the overall promise of increased interoperability to six distinct technical 
contributions of ontologies, and discuss a set of variables that can be used to 
classify ontology projects. 

1.1 Different notions of the term ontology 

Already in the early years of ontology research, Guarino and Giaretta 
(1995) raised concerns that the term “ontology” was used inconsistently. 
They found at least seven different notions assigned to the term: “… 

1. Ontology as a philosophical discipline 
2. Ontology as a an informal conceptual system 
3. Ontology as a formal semantic account 
4. Ontology as a specification of a conceptualization 
5. Ontology as a representation of a conceptual system via a logical 

theory 
5.1 characterized by specific formal properties 
5.2 characterized only by its specific purposes 

6. Ontology as the vocabulary used by a logical theory 
7. Ontology as a (meta-level) specification of a logical theory” (from 

Guarino & Giaretta, 1995). 

As the result of their analysis, they suggested to weaken the popular —
but often misunderstood and mis-cited — definition of “a specification of a 
conceptualization” by Tom Gruber (Gruber, 1993) to “a logical theory which 
gives an explicit, partial account of a conceptualization” (Guarino & 
Giaretta, 1995). Partial account in here means that the formal content of an 
ontology cannot completely specify the intended meaning of a conceptual 
element but only approximate it — mostly, by making unwanted 
interpretations logical contradictions. 

Although this early paper had already pointed to the possible 
misunderstandings, even as of today there is still a lot of inconsistency in the 
usage of the term, in particular at the border between computer science and 
information systems research. 
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The following three aspects of ontologies are common roots of 
disagreement about what an ontology is and what its constituting properties 
are: 

Truth vs. consensus: Early ontology research was very much driven by 
the idea of producing models of reality that reflect the “true” structures and 
that are thus valid independent of subjective judgment and context. Other 
researchers, namely Fensel (Fensel, 2001), have stressed that it is not 
possible to produce such “true” models and that instead consensual, shared 
human judgments must be the core of ontologies. 

Formal logic vs. other modalities: For a large fraction of ontology 
researchers, formal logic as a means (i.e., modality) for expressing the 
semantic account is a constituting characteristic of an ontology. For those 
researchers, neither a flat vocabulary with a set of attributes specified in 
natural language nor a conceptual model of a domain specified using an 
UML class diagram is an ontology. This is closely related to the question on 
whether the ontological commitment is only the logical account of the 
ontology or whether it also includes the additional account in textual 
definitions of its elements. In our opinion, it is highly arguable whether 
formal logic is the only or even the most appropriate modality for specifying 
the semantics of a conceptual element in an ontology. 

Specification vs. conceptual system: There is also some argument on 
whether an ontology is the conceptual system or its specification. For some 
researchers, an ontology is an abstraction over a domain of interest in terms 
of its conceptual entities and their relationships. For others, it is the explicit 
(approximate) specification of such an abstraction in some formalism, e.g. in 
OWL, WSML, or F-Logic. In our opinion, the more popular notion is 
reading an ontology as the specification of the conceptual system in the form 
of a machine-readable artifact. 

These differences are not mere academic battles over terminology; they 
are the roots of severe misunderstandings between research in computer 
science and research in information systems, and between academic research 
and practitioners. In computer science, researchers assume that they can 
define the conceptual entities in ontologies mainly by formal means — for 
example, by using axioms to specify the intended meaning of domain 
elements. In contrast, in information systems, researchers discussing 
ontologies are more concerned with understanding conceptual elements and 
their relationships, and often specify their ontologies using only informal 
means, such as UML class diagrams, entity-relationship models, semantic 
nets, or even natural language. In such contexts, a collection of named 
conceptual entities with a natural language definition — that is, a controlled 
vocabulary — would count as an ontology. 
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Also, we think it is important to stress that ontologies are not just formal 
representations of a domain, but community contracts about such 
representations. Given that a discourse is a dynamic, social process during 
which participants often modify or discard previous propositions or 
introduce new topics, such a community contract cannot be static, but must 
evolve. Also, the respective community must be technically and skill-wise 
able to build or commit to the ontology (Hepp, 2007). For example, one 
cannot expect an individual or a legal entity to authorize the semantic 
account of an ontology without understanding what they commit to by doing 
so. 

1.2 Ontologies vs. knowledge bases, XML schemas, and 
knowledge organization systems 

In this section, we try to differentiate ontologies from knowledge bases, 
XML schemas, and knowledge organization systems (KOS) as related 
terminology. 

Knowledge bases: Sometimes, ontologies are confused with knowledge 
bases, in particular because the same languages (OWL, RDF-S, WSML, etc.) 
and the same tools and infrastructure can be used both for creating 
ontologies and for creating knowledge bases. There is, however, a clear 
distinction: Ontologies are the vocabulary and the formal specification of the 
vocabulary only, which can be used for expressing a knowledge base. It 
should be stressed that one initial motivation for ontologies was achieving 
interoperability between multiple knowledge bases. So, in practice, an 
ontology may specify the concepts “man” and “woman” and express that 
both are mutually exclusive — but the individuals Peter, Paul, and Marry are 
normally not part of the ontology. Consequently, not every OWL file is an 
ontology, since OWL files can also be used for representing a knowledge 
base. 

This distinction is insofar difficult as individuals (instances) sometimes 
belong to the ontology and sometimes do not. Only those individuals that are 
part of the specification of the domain and not pure facts within that domain 
belong to the ontology. Sometimes it depends on the scope and purpose of 
an ontology which individuals belong to it, and which are mere data. For 
example, the city of Innsbruck as an instance of the class “city” would 
belong to a tourism ontology, but a particular train connection would not. 

We suggest speaking of ontological individuals and data individuals. 
With ontological individuals we mean such that are part of the specification 
of a domain, and with data individuals, we mean such being part of a 
knowledge base within that domain. 
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XML schemas are also not ontologies, for three reasons: 

1. They define a single representation syntax for a particular problem 
domain but not the semantics of domain elements. 

2. They define the sequence and hierarchical ordering of fields in a valid 
document instance, but do not specify the semantics of this ordering. For 
example, there is no explicit semantics of nesting elements. 

3. They do not aim at carving out re-usable, context-independent categories 
of things — e.g. whether a data element “student” refers to the human 
being or the role of being as student. Quite the opposite, we can often 
observe that XML schema definitions tangle very different categories in 
their element definitions, which hampers the reuse of respective XML 
data in new contexts. 

Knowledge organization systems (KOS) are means for structuring the 
storage of knowledge assets for better retrieval and use. Popular types of 
KOS are classifications and controlled vocabularies for indexing documents. 
There is a long tradition of KOS research and applications, in particular in 
library science. 

The main difference between traditional KOS and ontologies is that the 
former often tangle the dimension of search paths with the actual domain 
representation. In particular do classical KOS mostly lack a clear notion of 
what it means to be an instance or a subclass of a category. For example, the 
directory structure on our personal computer is a KOS, but not an 
ontology — since we mostly put a file into exactly one single folder, we try 
to make our folder structure match our typical search paths, and not to 
intersubjective, context-independent, and abstract categories of things. 

In contrast, one key property of an ontology is a context-independent 
notion of what it means to be an instance or a subclass of a given concept. So 
while in a closed corporate KOS, one can put an invoice for batteries for a 
portable radio in the “Radio and TV” folder, ontologies make sense only if 
we clearly distinguish things, related things, parts and component of those 
things, documents describing those things, and similar objects that are held 
together mainly by being somehow related to a joint topic. 

This tangling between search path and conceptualization in traditional 
KOS was caused by past technical limitations of knowledge access. For 
example, libraries must often sort books by one single identifier only, and 
maintaining extra indices was extremely labor-intensive and error-prone. 
Thus, the core challenge in designing traditional KOS was to partition an 
area of interest in a way compatible with popular search paths instead of 
carving out the true categories of existence guided by philosophical notions. 

This does not mean that designing KOS is a lesser art than ontology 
engineering — it is just that traditional KOS had to deal with the technical 
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limitation of a single, consensual search path, which is now less relevant. 
One of the most striking examples of mastering the design of a KOS is the 
science of using fingerprints for forensic purposes back in the 1920s: The 
major achievement was not spotting that fingerprints are unique and suitable 
for identifying a human being. Instead, the true achievement was to construct 
a suitable KOS so that traces found at a crime scene could be quickly 
compared with a large set of registered fingerprints — without visually 
comparing every single registered print, see e.g. Heindl (1927). 

So while ontology engineering can learn a lot from KOS research, it is 
not the same, because intersubjective, context-neutral categories of objects 
are key for successful ontology design. Without such “clean” categories of 
objects, the potential of ontologies for improved data interoperability cannot 
materialize (see also section 2.1). 

1.3 Six characteristic variables of an ontology project 

There exist several approaches of classifying types of ontologies, namely 
by Lassila and McGuinness (Lassila & McGuinness, 2001) and by Oberle 
(Oberle, 2006, pp. 43–47). Lassila and McGuinness did order ontologies by 
increasing degree of formal semantics, while Oberle introduced the idea of 
combining multiple dimensions. On the basis of these two approaches, we 
suggest classifying ontology projects using the following six characteristics: 

Expressiveness: The expressiveness of the formalism used for specifying 
the ontology. This can range from a flat frame-based vocabulary to a richly 
axiomatized ontology in higher order logic. A higher expressiveness allows 
more sophisticated reasoning and excludes more unwanted interpretations, 
but also requires much more effort for producing the ontology. Also, it is 
more difficult for users to understand an expressive ontology, because it 
requires a better education in logic and more time. Lastly, expressiveness 
increases the computational costs of reasoning. 

Size of the relevant community: Ontologies that are targeted at a large 
audience must have different properties than those intended for a small 
group of individuals only. For a large relevant community, an ontology must 
be easy to understand, well documented, and of limited size. Also, the 
consensus finding mechanism in broad audiences must be less subtle. For an 
in-depth discussion of this, see (Hepp, 2007). The important number in here 
is the number of human actors that are expected to commit to the ontology. 

Conceptual dynamics in the domain, i.e., the amount of new 
conceptual elements and changes in meaning to existing ones per period of 
time: Most domains undergo some conceptual dynamics, i.e., new categories 
of things become relevant, the definition of existing ones changes, etc. The 
amount of conceptual dynamics in the domain of interest determines the 
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necessary versioning strategy and also limits the feasible amount of detail of 
the ontology — the more dynamics there is in a given domain, the harder it 
gets to maintain a richly axiomatized ontology. 

Vocabulary

Narrower/Broader 
Relations

Formal Taxonomies

Description Logics

First-Order Logic

Expressiveness

Size of the 
Relevant Community

Conceptual Dynamics
in the Domain

Number of Conceptual 
Elements in the Domain

Degree of Subjectivity 
in a Conceptualization 

of the Domain

Average Size of the 
Specification 
per Element

Higher Order Logics

 

Figure 1-1. The six characteristic variables of an ontology project 

Number of conceptual elements in the domain: How large will the 
ontology be? A large ontology is much harder to visualize properly, and 
takes more effort to review. Also, large ontologies can be unfeasible for use 
with reasoners that require an in-memory model of the ontology. Often, 
smaller ontologies are adopted more quickly and gain a greater popularity 
than large ones (Hepp, 2007). 

Degree of subjectivity in a conceptualization of the respective 
domain: To which degree are the notions of a concept different between 
actors? For example, domains like religion, culture, and food are likely much 
more prone to subjective judgments than natural sciences and engineering. 
The degree of subjectivity determines the appropriate type of consensus-
finding mechanisms, and it also limits the feasible specificity per element 
(i.e., the richness of the ontological commitment). The latter is because the 
likelihood of disagreement increases the more specific our definitions get. 

Average size of the specification per element: How comprehensive is 
the specification of an average element? For example, are we expecting two 
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attributes per concept only, or fifty first-order logic axioms? This variable 
influences the effort needed for achieving consensus, for coding the 
ontology, and for reviewing the ontological commitment before adopting the 
respective ontology. 

Figure 1-1 presents the six variables in the form of a radar graph. By 
adding scales to the axes, one can use this to quickly characterize ontology 
projects. 

2. SIX EFFECTS OF ONTOLOGIES 

The promises of what ontologies can solve are broad, but as a matter of 
fact, ontologies are not good for every problem. Since ontologies are not 
everlasting assets but have a lifespan and require maintenance, there are 
situations in which building the ontologies required for a specific task is 
more difficult or more costly that solving the task without ontologies. 

In this section, we will analyze the actual contribution of ontologies to 
improved access and use of knowledge resources and identify six core parts 
of this contribution. This is insofar relevant as the various contributions 
differ heavily in how they depend on the formal account of an ontology. In 
particular, we will show that several claims of what ontologies can do 
depend not mainly on a rich formalization, but are materialized by clean 
conceptual modeling based on philosophical notions and by well-thought 
lexical enrichment (e.g. a human-readable documentation or synonym sets 
per each element). This also explains why ontologies are much more useful 
for new information systems as compared to problems related to legacy 
systems. Ontologies, for example, can provide little help if old source 
systems provide data in a poorly structured way. 

The uses of ontologies have been summarized by Gruninger and Lee as 
follows (Gruninger & Lee, 2002, p. 40): “… 

• for communication 
o between implemented computational systems 
o between humans 
o between humans and implemented computational systems 

• for computational inference 
o for internally representing plans and manipulating plans and 

planning information 
o for analyzing the internal structures, algorithms, inputs and 

outputs of implemented systems in theoretical and conceptual 
terms 

• for reuse (and organization) of knowledge 
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o for structuring or organizing libraries or repositories of plans 
and planning and domain information.” 

Note that ontologies provide more than the basis for computational 
inference on data, but are also helpful in improving the interaction between 
multiple human actors and between humans and implemented computer 
systems. 

Whenever computer science meets practical problems, there is a trade-off 
problem between human intelligence and computational intelligence. 
Consequently, it is important to understand what ontologies are not good for 
and what is difficult. For example, people from outside the field often hope 
for support in problems like unit conversion (inches to centimeters, dollars to 
Euro, net prices to gross prices, etc.) or different reference points for 
quantitative attributes, while current ontology technology is not suited for 
handling functional conversions and arithmetics in general. 

Also, it was often said that integrating e-business product data and 
catalogs would benefit from ontologies, see e.g. the respective challenge of 
mapping UNSPSC and eCl@ss (Schulten et al., 2001). While there were 
academic prototypes and success stories (Corcho & Gómez-Pérez, 2001), the 
practical impact is small, since the conceptual modeling quality of the two 
standards is limited, which constrains the efficiency of possible mappings. 
For example, assume that we have two classification systems A and B, and 
that system A includes a category “TV Sets and Accessories” and system B a 
related one “TV Sets and Antennas.” Now, the only possible mapping is that 
“TV Sets and Antennas” is a subclass of “TV Sets and Accessories.” This 
provides zero help for reclassifying source data stored using system A into 
system B. Also, those two classifications undergo substantial change over 
time, and a main challenge for users is to classify new, unstructured data sets 
using semi-automatic tools. In general, for any problem where the source 
representation is weakly structured, the actual contribution of ontologies is 
limited, because the main problem is then lifting that source data to a more 
structured conceptual level — something for which machine learning and 
natural language technologies can contribute more than ontologies can. 

Fortunately, there are now more and more successful examples of 
ontology usage, e.g. matching patients to clinical trials (Patel et al., 2007) 
and the three uses cases in chapters 8, 9, and 10 of this book. Additional use 
cases are described in Cardoso, Hepp, & Lytras (2007). It must be said, 
though, that the broad promises of the early wave of ontology research were 
too optimistic, because the advocates had ignored the technical difficulties of 
(1) providing ontologies of sufficient quality and currency, (2) of annotating 
source data, and (3) of creating complete, current, and correct mappings —
and did mostly not compare the costs and benefits of ontologies over their 
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lifespan. Two notable exceptions are Menzies in 1999 (Menzies, 1999) and 
recently Oberle (Oberle, 2006, in particular pp. 242–243). 

In the following, we trace back the general advancement that ontologies 
provide to six distinct technical effects. 

2.1 Using philosophical notions as guidance for 
identifying stable and reusable conceptual elements 

One core part of ontological engineering is the art and science of 
producing clean, lasting, and reusable conceptual models. With clean we 
mean conceptual modeling choices that are based on philosophically well-
founded distinctions and that hold independent of the application context. 
The most prominent contribution in this field is the OntoClean methodology, 
see (Guarino & Welty, 2002) and (Guarino & Welty, 2004). 

A practical example is the distinction between actors and their roles, e.g. 
that being a student is not a subclass of being a human, but a role — or that a 
particular make and model of a commodity is not a subclass of a particular 
type of good, but a conceptual entity in its own right. 

Such untangling of objects increases the likelihood of interoperability of 
data, because it is the precision and subtleness of the source representation 
that always determines the degree of automation in the usage and access to 
knowledge representations. Also, maintaining attributes for types of objects 
is much easier if the hierarchy of objects is designed in this way. 

In other words: The cleaner our conceptual distinctions are, the more 
likely it is that we are not putting into one category objects that need to be 
kept apart in other usages of the same data — in future applications and in 
novel contexts. 

So ontology engineering is also a school of thinking that leads to better 
conceptual models. 

2.2 Unique identifiers for conceptual elements 

Exactly 20 years ago, Furnas and colleagues have shown that the 
likelihood that two individuals choose the same word for the same thing in 
human-system communication is less than 20% (Furnas, Landauer, Gomez, 
& Dumais, 1987). They have basically proven that there is “no good access 
term for most objects” (Furnas, Landauer, Gomez, & Dumais, 1987, p. 967). 
They also studied the likelihood that two people using the same term refer to 
the same referent, with only slightly better results; as a cure, they suggested 
the heavy use of synonyms. 

Ontologies provide unique identifiers for conceptual elements, often in 
the form of a URI. We call this the “controlled vocabulary effect” of 
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ontologies. This effect is an important contribution, and the use of ontologies 
is often motivated by problems caused by homonyms and synonyms in 
natural languages. 

However, we should note that this vocabulary effect does not require the 
specification of domain elements by formal means. Well-thought 
vocabularies with carefully chosen terminology and synonym sets can serve 
the same purpose. Much more, we do not know of any quantitative evidence 
that the formal semantics of any available ontology surpasses such well-
designed vocabularies in efficiency. At the same time, formal content raises 
the bar for user participation. 

2.3 Excluding unwanted interpretations by means of 
informal semantics 

Besides providing unique identifiers only, ontologies can be augmented 
by well-thought textual definitions, synonym sets, and multi-media elements 
like illustrations. In fact, the intended semantics of an ontology element 
cannot be conveyed by the formal specification only but requires a human-
readable documentation. In practice, we need ontologies that define elements 
with a narrow, real-world meaning. For example, we may need ontologies 
with classes like 

Portable Color TV ⊆ TV Set ⊆ Media Device 

In such cases, the intended semantics goes way beyond 

A ⊆ B ⊆ C 

Instead, we will have to exclude unwanted interpretations by carefully 
chosen labels and textual definitions. There exists a lot of experience in the 
field of terminology research that could help ontology engineers in this task, 
namely the seminal work by Eugen Wüster, dating back to the 1930s on how 
we should construct technical vocabularies in order to mitigate 
interoperability problems in technology and trade in a world of high 
semantic specificity (Wüster, 1991). His findings and guidelines on how to 
create consensual, standardized multi-lingual vocabularies for technological 
domains are by far more specific and more in-depth than the simplistic 
examples of ontologies for e-commerce in the early euphoria about 
ontologies in the late 1990. 

This “linguistic grounding” of ontology projects is a major challenge —
at the same time, such proper textual definitions can often already keep a 
large share of what ontologies promise. In particular when it comes to 
attributes and relations, specifying their intended semantics by axioms is 
difficult and often unfeasible, while properly chosen textual definitions are 
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in practice sufficient for communicating the intended meaning. eCl@ss 
(eClass e.V., 2006) and eClassOWL (Hepp, 2006a) and (Hepp, 2006b) for 
example, specify the intended meaning of the attribute “height” (property 
BAA020001) as follows: 

“With objects with [a] preferred position of use, the dimension which is 
generally measured oriented to gravity and generally measured 
perpendicular to the supporting surface.” 

It is noteworthy that the RosettaNet Technical Dictionary, a standardized 
vocabulary for describing electronic components (RosettaNet, 2004) does 
not include any hierarchy, because the participating entities could not reach 
consensus on that. Instead, it consists just of about 800 flat classes 
augmented by about 3000 datatype properties but was still practically useful. 

This subsection should tell two things: First, that matching the state of 
the art in terminology research is key for the informal part of an ontology 
project. Second, that a large share of the promise of ontologies can be 
achieved solely by the three technical effects described so far, which do not 
require the specification of ontology elements by axioms and neither a 
reasoner at run-time. 

2.4 Excluding unwanted interpretations by means of 
formal semantics 

As we have already discussed, a large part of ontology research deals 
with the formal account of ontologies, i.e., specifying an approximate 
conceptualization of a domain by means of logic. For example, we may say 
that two classes are disjoint, that one class is a subclass of another, or that 
being an instance of a certain class implies certain properties. For some 
researchers, this formal account of an ontology is even the only relevant 
aspect of ontologies. 

The axiomatic specification of conceptual elements has several 
advantages. First of all, formal logic provides a precise, unambiguous 
formalism — compared to the blurriness of e.g. many graphical notations. In 
contrast, it took quite some time until Brachman described in his seminal 
paper that the blurriness of is-a relations in semantic nets is very 
problematic, teaching us in particular to make a clear distinction between 
sublassOf and instanceOf (Brachman, 1983). 

In a nutshell, logical axioms about the element of an ontology constrain 
the interpretation of this element. The more statements are made about a 
conceptual element by means of axioms, the less can we err on what is 
meant, because some interpretations would lead to logical contradictions. 
For an in-depth discussion on whether aximatization is effective as “the main 
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tool used to characterize the object of inquiry,” see Ferrario (2006). Also, we 
highly recommend John Sowa’s “Fads and Fallacies of Logic” (Sowa, 
2007). 

It is definitely not a mistake to use a rock-solid formal ground for 
specifying what needs to be specified in an ontology, because it eliminates 
subjective judgment and differences in the interpretation of the language for 
specifying an ontology. Many graphical notations, including the popular 
entity-relationship diagrams (ERDs) have suffered from being used by 
different people with a different meaning in mind, hampering exchange and 
reuse of models. 

However, this does not mean that full axiomatization is the most 
important aspect of building an ontology. Whether an ontology should be 
heavyweight or lightweight in terms of its formal account depends on the 
trade-off between what one gains by a richer axiomatization vs. what efforts 
are necessary to produce this. Note that producing in here means not only 
writing down an axiomatic definition of a conceptual element, but also to 
achieve consensus with all stakeholders about this axiomatic definition. 

2.5 Inferring implicit facts automatically 

The axiomatic definition of conceptual elements as described in the 
previous section also empowers computational inferences, i.e., the use of a 
reasoner component to deduce new, implicit facts. An important contribution 
of this property is that it reduces redundancy in the representation of a 
knowledge base and thus eases its maintenance, because we do not need to 
assert explicitly what is already specified in the ontology. 

However, it is sometimes assumed that being able to infer new facts from 
the axiomatization using a reasoner is the main gain of an ontology, and that 
without it, an ontology would not be “machine-readable.” That is not correct, 
because the unique identifiers, provided for the conceptual elements, alone 
improve the machine-readability of data. For example, simply using a 
specific URI for expressing the relationship “knows” between two 
individuals empowers a computer to find, aggregate, and present any such 
statement in any Fried-of-a-Friend document. Same holds for the rich 
libraries of datatype properties contained in eClassOWL (Hepp, 2006a)—
their formal semantics is constrained to what kind of datatype a value used in 
a respective statement is, but their informal content is very rich. 

In short, the ability to use computers to deduce additional facts based on 
the axiomatic content of an ontology can be valuable and is interesting from 
a research perspective. However, it is only one of at least six positive effects 
of ontologies, and its share on improved interoperability has, to our 
knowledge, so far not been quantitatively analyzed. 
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2.6 Spotting logical inconsistencies 

A side effect on the axiomatic specification of conceptual elements in an 
ontology is that it increases the likelihood that modeling errors can be 
spotted, because an inference engine is empowered to find logical 
inconsistencies. Again, this is a potentially valuable contribution, but its 
effect on more consistent conceptual models of domains still needs 
quantitative evidence. Also, it must be stressed that only logical 
inconsistencies can be spotted this way, while other types of modeling errors 
remain undetected. 

3. GRAND CHALLENGES OF ONTOLOGY 
CONSTRUCTION AND USE 

The main goal of ontology engineering is to produce useful, consensual, 
rich, current, complete, and interoperable ontologies. In the following, we 
discuss six fundamental problems of building and using ontologies in real-
world applications. 

3.1 Interaction with human minds 

Since ontologies are not for machines only, but are the glue between 
human perception of reality and models of that reality in computers, it is 
crucial that humans can understand an ontology specification, both at design 
time and when using an ontology to annotate data or to express queries. This 
problem has two major branches: 

HCI challenge and visualization: It is difficult to develop suitable 
visualization techniques for ontologies. For example, it has been investigated 
to reuse popular modeling notations, namely from conceptual modeling, like 
ERM, UML class diagrams, and ORM (Jarrar, Demey, & Meersman, 2003). 
The advantage of this approach is a higher degree of familiarity, but there is 
a danger that human users underestimate the differences between data 
modeling and ontology engineering. In general, the larger the ontology and 
the more expressive the underlying formalism, the more difficult is it to 
provide a suitable ontology visualization. Chapter 2 discusses this problem 
and current solutions in more detail. 

Interplay between human languages and ontologies: Human language 
is likely the most comprehensive phenomenon in which human thought, 
including our abstractions, subjective judgments, and categories of thinking 
manifest. Unfortunately, a large share of ontology researchers avoid natural 
language both as a resource to be harvested when creating ontologies and as 
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a modality for expressing the semantics (see also section 2.3). For successful 
ontology projects, however, a tight integration with human language is 
crucial. This is for example taken into account by the DOGMA-MESS 
approach with a strong lexical component in the development process (de 
Moor, De Leenheer, & Meersman, 2006). Also, ontology learning as the 
attempt to deduce conceptual structures from lexical resources is getting 
more and more attention, and respective expertise is gaining relevance. For 
an overview of the field, see e.g. (Buitelaar, Cimiano, & Magnini, 2005). 

3.2 Integration with existing knowledge organization 
systems 

A lot of existing knowledge is stored using traditional systems of 
knowledge organization, for example, standardized hierarchical 
classifications like eCl@ss1 and UNSPSC2 in the e-commerce domain or the 
“International Classification of Diseases” (ICD-10)3 in the medical sector. If 
we want to use ontology technology for increasing interoperability between 
multiple such representations or increased access to existing data, we need to 
build ontologies that are linked to those existing knowledge organization 
systems (KOS). Also, reusing existing resources and consensus from those 
systems can reduce the effort for building ontologies. 

Several researchers have analyzed the complexity of deriving ontologies 
from existing consensus in the form of informal thesauri and classifications, 
e.g. thesauri to SKOS (van Assem, Malaisé, Miles, & Schreiber, 2006), 
classifications into lightweight ontologies (Giunchiglia, Marchese, & 
Zaihrayeu, 2006) and (Hepp & de Bruijn, 2007), or products and services 
classification standards to OWL ontologies (Hepp, 2006b). 

3.3 Managing dynamic networks of formal meaning 

As ontologies are not static conceptual models of “eternal” truth, but 
artifacts reflecting our gradual understanding of reality, we face the 
difficulty of managing such dynamic networks of meaning (Fensel, 2001). 
This creates at least three branches of problems: 

Ontology evolution, i.e., dealing with change: We need to make sure 
that ontologies are continuously updated so that they reflect the current state 
of the respective domain. For example, product innovation leads to new 
types of products and services, and advancement in research to new classes 

                                                      
1 http://www.eclass.de 
2 http://www.unspsc.org 
3 http://www.who.int/classifications/icd/en/ 
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of diseases and symptoms. For quickly evolving domains, it is an open 
research question whether we can we build ontologies fast enough to reflect 
those domains properly. See Chapter 5 for more on ontology evolution. 

Interoperability between ontologies: If we have more than one single 
ontology, the problem of data interoperability turns into a problem of 
interoperability between multiple ontologies. Such is achieved by alignments 
between ontologies, e.g. sets of statements of semantic relationships. Those 
alignments are ontological commitments themselves, and there can be 
multiple sets of statements of semantic relationships for different purposes. 
See Chapter 6 for more on ontology alignments. 

Integration of ontology construction and ontology usage: Due to their 
high level of abstraction, ontologies mostly suffer from a very 
disadvantageous decoupling between their construction and their usage. It is 
very desirable that using ontologies for annotating instances and for 
expressing queries is much more tightly integrated with the evolution of the 
ontologies. For example, users spotting the need for a new element while 
expressing a query should be able to do so. The current state is similar to 
developing a dictionary without speaking the respective language, i.e., 
without continuously probing our assumptions about the semantics and 
usage of words by communicating. 

3.4 Scalable infrastructure 

While relational database management systems (RDBMS) have reached a 
high level of maturity and provide high performance and scalability even on 
desktop computers, ontology repositories still fall short in those terms. In 
fact, it is only recently that ontology repositories with some degree of 
reasoning support have been released that can deal with larger ontologies or 
large sets of instance data. However, quite clearly, users will not accept 
falling behind the state of the art in scalability and performance when 
adopting semantic technology. 

There are two main branches of research in this field: First, determining 
fragments of existing ontology languages that provide an attractive 
combination of expressiveness and computational costs. The main idea is 
that e.g. RDF-S is a too limited ontology language, while OWL DL 
reasoning is too complex for many large-scale contexts. 

The second is trying to combine reasoners with relational databases so 
that the existing achievements in terms of scalability and performance can be 
built on. 

Chapter 4 summarizes the state of the art in this field. 
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3.5 Economic and legal constraints 

So far, research has mainly addressed the technical problems of ontology 
usage, but largely ignored the economic and legal constraints. However, the 
large deployment of ontology technology will require answers to those 
questions, too. 

Resource consumption: Does the gain in automation that the ontology 
provides justify the resources needed to develop it? From another perspective, 
do the technical problems that the ontology can help us solve outweigh the 
problems we must master to create it? A first approach in that direction is the 
work on cost estimation models for ontologies, see Chapter 7. 

Incentive conflicts and network externalities: Is the incentive structure 
for relevant actors in the process compatible with the required contributions? 
For example, are those who must dedicate time and resources benefiting 
from the ontologies? Moreover, ontologies exhibit positive network effects, 
such that their perceived utility increases with the number of people who 
commit to them (Hepp, 2007). This implies that convincing individuals to 
invest effort into building or using ontologies is particularly difficult while 
the user base associated with it is small or nonexistent. 

Intellectual property rights: For many applications, we need ontologies 
that represent existing standards. However, standards are often subject to 
intellectual property rights (Samuelson, 2006). Establishing the legal 
framework for deriving ontologies from relevant standards is thus nontrivial. 

A more detailed discussion of these problems is in Hepp (2007). 

3.6 Experience 

Since ontologies are a rather new technology outside of academia, one 
inhibitor to their wide usage is the lack of experiences from their application. 
Such successful use cases can provide best practices and experiences, and 
help assess the costs and benefits of new projects. 

In this book, we present the collected experiences from three application 
domains, see Chapters 8, 9, and 10. Also, there is another compilation of use 
cases of semantic technology in the book Cardoso, Hepp, & Lytras (2007). 

4. CONCLUSION 

Managing ontologies and annotated data throughout their lifecycles is at 
the core of semantic systems of all kinds. This begins with establishing a 
consensual conceptualization of a domain and includes, often iteratively, a 
wealth of operations on (or on the basis of) the resulting ontologies, and 
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creates challenges in the elicitation, storage, versioning, retrieval, and 
application. All such operations must support collaboration and may require 
the involvement of the individuals defining and using the ontologies (i.e., the 
committing communities), where human interpretation and negotiation of the 
elicited knowledge is indispensable. 

This eventually makes managing ontologies in large-scale applications 
very difficult. While a lot of foundational research results have been 
achieved and published in the past years, mostly in academia, the true 
complexity of ontology management is still a major research challenge. 

With this book, we aim at presenting a current summary of the state of 
the art in the field. Part II of the book will discuss the infrastructure for 
ontology management and related tools. Part III addresses the evolution of 
ontologies and how alignments between multiple ontologies can be 
produced. It concludes with a section that presents a cost estimation model 
for ontology projects. Part IV summarizes the practical experiences from 
ontology engineering and ontology management in three selected use cases 
in e-banking, engineering in the automotive sector, and managing 
competencies in the Dutch bakery domain. 

ACKNOWLEDGEMENTS 

The overall work on this book has been supported by the European 
Commission under the project DIP (FP6-507483). This chapter was written 
with partial support from the European Commission under the projects 
SUPER (FP6-026850) and MUSING (FP6-027097), and from the Austrian 
BMVIT/FFG under the FIT-IT project myOntology (grant no. 
812515/9284). Martin Hepp has also support from a Young Researcher’s 
Grant (Nachwuchsförderung 2005–2006) from the Leopold-Franzens-
Universität Innsbruck, which is thankfully acknowledged. 

REFERENCES 

v. Assem, M., Malaisé, V., Miles, A., & Schreiber, G. (2006). A Method to Convert Thesauri 
to SKOS. Proceedings of the 3rd European Semantic Web Conference (ESWC 2006), 
Budva, Montenegro, pp. 95–109. 

Brachman, R. J. (1983). What IS-A Is and Isn’t: An Analysis of Taxonomic Links in 
Semantic Networks. IEEE Computer, 16(10), pp. 30–36. 

Buitelaar, P., Cimiano, P., & Magnini, B. (2005). Ontology Learning from Text: Methods, 
Evaluation and Applications (Vol. 123). Amsterdam, The Netherlands: IOS Press. 

Cardoso, J., Hepp, M., & Lytras, M. (Eds.). (2007). The Semantic Web. Real-World 
Applications from Industry. Berlin etc.: Springer. 



1. Ontologies: State of the Art, Business Potential, and Grand Challenges 21
 
Corcho, O., & Gómez-Pérez, A. (2001). Solving Integration Problems of E-commerce 

Standards and Initiatives through Ontological Mappings. Proceedings of the Workshop on 
E-Business and Intelligent Web at the Seventeenth International Joint Conference on 
Artificial Intelligence (IJCAI-2001), Seattle, USA, pp. 1–10. 

eClass e.V. (2006). eCl@ss: Standardized Material and Service Classification, 
http://www.eclass-online.com/ 

Fensel, D. (2001). Ontologies: Dynamic networks of formally represented meaning,  
http://sw-portal.deri.at/papers/publications/network.pdf 

Ferrario, R. (2006). Who Cares about Axiomatization? Representation, Invariance, and 
Formal Ontologies. Epistemologia, Special Issue on the Philosophy of Patrick Suppes, 2, 
(forthcoming). 

Furnas, G. W., Landauer, T. K., Gomez, L. M., & Dumais, S. T. (1987). The Vocabulary 
Problem in Human-System Communication. Communications of the ACM, 30(11), pp. 
964–971. 

Giunchiglia, F., Marchese, M., & Zaihrayeu, I. (2006). Encoding Classifications into 
Lightweight Ontologies. Proceedings of the 3rd European Semantic Web Conference 
(ESWC 2006), Budva, Montenegro, pp. 80–94. 

Gruber, T. R. (1993). A Translation Approach to Portable Ontology Specifications. 
Knowledge Acquisition, 5(2), pp. 199–220. 

Gruninger, M., & Lee, J. (2002). Ontology Applications and Design. Communications of the 
ACM, 45(2), pp. 39–41. 

Guarino, N., & Giaretta, P. (1995). Ontologies and Knowledge Bases. Towards a 
Terminological Clarification. In N. Mars (Ed.), Towards Very Large Knowledge Bases: 
Knowledge Building and Knowledge Sharing (pp. 25–32). Amsterdam: IOS Press. 

Guarino, N., & Welty, C. A. (2002). Evaluating Ontological Decisions with OntoClean. 
Communications of the ACM, 45(2), pp. 61–65. 

Guarino, N., & Welty, C. A. (2004). An Overview of OntoClean. In S. Staab & R. Studer 
(Eds.), The Handbook on Ontologies (pp. 151–172). Berlin: Springer. 

Heindl, R. (1927). System und Praxis der Daktyloskopie und der sonstigen technischen 
Methoden der Kriminalpolizei (3rd ed.). Berlin: Walter de Gruyter & Co. 

Hepp, M. (2006a). eCl@ssOWL. The Products and Services Ontology, 
http://www.heppnetz.de/eclassowl/ 

Hepp, M. (2006b). Products and Services Ontologies: A Methodology for Deriving OWL 
Ontologies from Industrial Categorization Standards. Int’l Journal on Semantic Web and 
Information Systems (IJSWIS), 2(1), pp. 72–99. 

Hepp, M. (2007). Possible Ontologies: How Reality Constrains the Development of Relevant 
Ontologies. IEEE Internet Computing, 11(7), pp. 90–96. 

Hepp, M., & de Bruijn, J. (2007). GenTax: A Generic Methodology for Deriving OWL and 
RDF-S Ontologies from Hierarchical Classifications, Thesauri, and Inconsistent 
Taxonomies. Proceedings of the 4th European Semantic Web Conference (ESWC 2007), 
Innsbruck, Austria, pp. 129–144. 

Jarrar, M., Demey, J., & Meersman, R. (2003). On Using Conceptual Data Modeling for 
Ontology Engineering. Journal on Data Semantics, LNCS 2800(I), pp. 185–207. 

Lassila, O., & McGuinness, D. L. (2001). The Role of Frame-Based Representation on the 
Semantic Web. Linköping Electronic Articles in Computer and Information Science, Vol. 6 
(2001), No. 005, http://www.ep.liu.se/ea/cis/2001/005/ 

Menzies, T. (1999). Cost Benefits of Ontologies. intelligence, 10(3), pp. 26–32. 
de Moor, A., De Leenheer, P., and Meersman, R. (2006). DOGMA-MESS: A meaning 

evolution support system for interorganizational ontology engineering. Proceedings of the 
14th International Conference on Conceptual Structures, Aalborg, Denmark, pp. 189–203. 



22 Chapter 1 
 
Oberle, D. (2006). Semantic Management of Middleware. New York: Springer. 
Patel, C., Cimino, J., Dolby, J., Fokoue, A., Kalyanpur, A., Kershenbaum, A., et al. (2007). 

Matching Patient Records to Clinical Trials Using Ontologies (IBM Research Report No. 
RC24265 (W0705-111)). Almaden etc.: IBM Research. 

RosettaNet. (2004). RosettaNet Technical Dictionary, 
http://www.rosettanet.org/technicaldictionary 

Samuelson, P. (2006). Copyrighting Standards. Communications of the ACM, 49(6), pp. 27–
31. 

Schulten, E., Akkermans, H., Botquin, G., Dörr, M., Guarino, N., Lopes, N., et al. (2001). The 
E-Commerce Product Classification Challenge. IEEE Intelligent Systems, 16(4), pp. 86–
89. 

Sowa, J. (2007). Fads and Fallacies about Logic. IEEE Intelligent Systems, 22(2), pp. 84–87. 
Wüster, E. (1991). Einführung in die allgemeine Terminologielehre und terminologische 

Lexikographie (3rd ed.). Bonn: Romanistischer Verlag. 
 



II. INFRASTRUCTURE 
 



Chapter 2 

ENGINEERING AND CUSTOMIZING 
ONTOLOGIES 
The Human-Computer Challenge in Ontology Engineering 

Martin Dzbor and Enrico Motta 
Knowledge Media Institute, The Open University, UK, {M.Dzbor, E.Motta}@open.ac.uk,  
Tel. +44-1908-653-800; Fax +44-1908-653-169 

Abstract: In this chapter we introduce and then discuss the broad and rather complex 
area of human-ontology interaction. After reviewing generic tenets of HCI and 
their relevance to ontology management, we give an empirical evidence of 
some HCI challenges for ontology engineering tools and the shortcomings in 
some existing tools from this viewpoint. We highlight several functional 
opportunities that seem to be missing in the existing tools, and then look at 
three areas that may help rectifying the identified gaps. We relate methods 
from user profiling, large data set navigation and ontology customization into 
a “triple stack,” which may bring tools for engineering ontologies from the 
level of niche products targeting highly trained specialists to the ‘mainstream’ 
level suitable for practitioners and ordinary users. The work presented in this 
chapter is based on the authors’ research together with other colleagues in the 
context of the “NeOn: Lifecycle Support for Networked Ontologies” project. 

Keywords: HCI; human-ontology interaction; NeOn; networked ontologies; ontology 
customization; user study of ontology engineering tools 

1. INTRODUCTION 

Human-computer interaction (HCI) is a well-established and rich subject 
that has an impact not only on those who develop computational systems, 
but also on the users of such systems, the vendors, maintainers, and many 
more stakeholders who are normally involved in designing and delivering 
software and computer-based tools. At the centre of HCI as a science is the 
core of its investigation: interactions. Note that this emphasis on an abstract 
notion “interaction” does not reduce the importance of the users or push 
them into a background. 
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On the contrary, the term “interaction” is broader, and in general, 
involves three constituting parts: the user, the technology, and the way they 
work together. One can then study such phenomena as how the users work 
with a particular technology, what the users prefer, how the technology 
addresses given issues, etc. The purpose of this chapter is not to delve into 
generic HCI issues applicable to any technology. We want to expand the 
views of HCI to cover what we label as human-ontology interaction.  

Human-ontology interaction can be seen as a subset of HCI issues that 
apply to specific tasks and specific technologies. Our aim is to investigate 
how users interact with the ontologies, in general, and with networked 
ontologies, in particular, and how they do it in a realistic ontology lifecycle 
scenario. While HCI is a subject almost as old as the computer science, the 
specifics of interacting with ontologies were not considered in much depth. 
Tools supporting ontological engineering are considered to be primarily 
software tools, and thus, it is presumed that general findings of the HCI 
practitioners also apply to ontologies. 

To some extent, this is true; however, design, engineering and 
subsequently maintenance of ontologies are indeed specific ways to interact 
with the technology. In other words, the change in the activity implies a 
change in the entire interaction. Thus, an action that may look similarly to 
other software systems (e.g. opening a file) may acquire semantically very 
specific meaning in the context of a particular activity (in our case, ontology 
engineering). 

In this chapter, we look at several different aspects of how a user may 
interact with ontologies in a varied sort of ways. The first part of the chapter 
is concerned with a user study that we carried out in order to improve our 
understanding of the level of user support provided by current ontology 
engineering tools in the context envisaged by the NeOn project1. That is, in a 
scenario when ontology engineers are developing complex ontologies by 
reuse, i.e., by integrating existing semantic resources.  

While the existing empirical work on exploring HCI aspects of the 
ontology engineering tools points to several problems and challenges, we 
decided to conduct a new study, because none of the studies reviewed in 
section 2.1 provided sufficient data to drive the development of the ontology 
engineering tools addressing the NeOn scenario. In particular, the use of 
tools by ordinary users, the emphasis on ontology reuse and the embedment 
of the study in a real-world engineering task. 

A complementary view to this empirical user study is presented in the 
latter part of the chapter: exploring the HCI challenge with more analytic 

                                                      
1 “NeOn: Lifecycle support for networked ontologies” is a large-scale integrated project co-

funded by the European Commission by grant no. IST-2005-027595; more information on 
its focus, outcomes and achievements so far can be found on http://NeOn-project.org. 
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lenses, and focusing on a variety of tools that were specifically designed to 
support ontological engineering, or could be reused with ontologies in a 
serendipitous manner. With this view in mind we consider several 
approaches, technologies, and tools to illustrate various aspects of where 
user interaction with ontologies becomes somewhat specific and different 
from using other software systems and tools. 

Before going more in depth, let us introduce the basic terminology first. 
In order to work in a structured manner, we separate the terms that 
traditionally come from the HCI domain from the terms that are typical for 
ontology engineering. 

1.1 Terms frequently used in HCI 

In this section we present common and established meanings of terms 
and issues that are usually mentioned in connection with user interaction in 
general. The purpose of this brief glossary is twofold: (i) to introduce terms 
that are used in the subsequent sections of this chapter to those practitioners 
with less background in traditional HCI, and (ii) to differentiate between 
terms that are often used interchangeably by lay persons. We are not 
defining here any terms related to ontology engineering in general, as these 
have a broader scope of validity than the chapter on HCI challenges, and are 
covered elsewhere in the book. 

• Accessibility: In general, this term reflects the degree to which a given 
system is usable by different users. It can be expressed in terms of ease 
with which to access certain features or functions of the system, together 
with the possible benefits such access may bring to the user. Often this 
term is interpreted in the sense of ‘enabling people who are physically 
disabled to interact with the system.’ This is a slightly unfortunate 
emphasis on one specific motivation for pursuing accessibility. In a non-
disabled sense, accessibility may include aspects like appropriate 
language, jargon, level of detail, choice of action, etc. 

• Customization: In the computer science this term refers to the capability 
of users to modify or otherwise alter the layout, appearance and/or 
content of information with which they want to interact. This term is 
often used together with personalization (see also explanation of term 
‘profile’ below). In this deliverable we shall see customization as an 
ability to adapt user interfaces and tools so that they fit a particular 
user’s needs and accessibility constraints (see also term ‘accessibility’ 
above for some objective, explicit criteria that may be customized). 

• End user: Popularly used to describe an abstract group of persons who 
ultimately operate or otherwise use a system — in computing, where this 
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term is most popular, the system corresponds to a piece of software. The 
abstraction is expressed in terms of a relevant sub-set of a user’s 
characteristics (e.g. his/her technical expertise, prior knowledge, task, 
objective, skill, etc.) — leading to such user categories as knowledge 
engineers, developers, administrators, etc. 

• Graphical User Interface (GUI): GUI is a type of user interface that 
came to prominence in computer science in the 1980s. The hallmark of 
this type is the use of graphical images (so called widgets), texts and 
their managed appearance on the computer screen to represent the 
information and actions available to the user. Another hallmark is that 
the user’s actions are performed by directly manipulating the graphical 
elements (widgets) on the screen. GUI is often defined in contrast with 
command-based, text-only or terminal-based user interfaces. 

• Localization: In the context of computing and HCI, localization is seen 
as the adaptation of an object or a system to a particular locality. A 
typical example is where a locality is defined in terms of different 
languages (e.g. English, Spanish, etc.), and the system is expected to 
translate messages and other aspects of its UI into the language suitable 
for or selected by the user. Thus, localization may be seen as a 
customization of a tool for a specific country, region or language group. 
In some literature, this term is used jointly with term 
‘internationalization.’ However, language is only one (albeit most 
visible) aspect of the system UI that can be translated to the local 
customs. Other aspects that may need amendments include issues like 
time and date formatting, decimal number formatting, phone and 
postcode formatting, and locally used units of measure (e.g. feet, meters, 
etc.) Less common adaptations are in the use of colors, layouts and 
imaging appropriate to a particular locality. 

• Modality (of user interface): A path or communication channel 
employed by the user interface to accomplish required inputs, outputs 
and other activities. Common modalities include e.g. keyboard, mouse, 
monitor, etc. 

• (User) Preference: This term represents a real or imagined choice 
between alternatives and a capability to rank the alternatives according 
to some criterion. In computer science, this term is typically used in the 
sense that users choose among alternative user interactions, user 
interface components and/or paths. In computing, user preferences are 
often based on the utility (value) of the available alternatives to the 
particular user, in a particular situation or task. 

• (User) Profile: a term seen in the context of computing as a way to 
describe some user properties that are relevant for a particular task and 
can help in tailoring information delivery to the specific user. Note that 
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‘user’ may mean a concrete individual person as well as an abstract user 
(e.g. a group or type). 

• Usability: A degree to which the design of a particular user interface 
takes into account human needs defined in terms of psychology or 
physiology of the users. Usability looks at how effective, efficient and 
satisfying the user interface (and the underlying application) is. 

• User experience: Broadly, this term describes an overall experience, 
satisfaction and/or attitude a user has when using a particular system. In 
computing, this term is often used interchangeably with terms like 
usability and sometimes accessibility. 

1.2 About ontological engineering 

In the early 1990’s, a group of Artificial Intelligence (AI) and database 
(DB) researchers got together to define a standard architecture stack for 
allowing intelligent systems to interoperate over a knowledge channel and 
share data, models, and other knowledge without sharing data schema or 
formats. This group comprised Tom Gruber — the person who is widely 
credited with clarifying a definition of ontology for the AI community and 
for promoting the vision of ontologies as enabling technology:  

“In the context of knowledge sharing, I use the term ontology to mean a 
specification of a conceptualization. That is, an ontology is a description 
(like a formal specification of a program) of the concepts and 
relationships that can exist for an agent or a community of agents. This 
definition is consistent with the usage of ontology as set-of-concept-
definitions, but more general.” (Gruber 1993a; Gruber 1993b) 

Ontologies are designed artifacts, similar to cars, desks or computers. As 
such, they always have a purpose, they are engineered for something. In the 
original vision of Tom Gruber, ontologies were artifacts facilitating sharing 
and interchange of knowledge, or making commitments to particular 
meanings. While an ontology may be in principle an abstract conceptual 
structure, from the practical perspective, it makes sense to express it in some 
selected formal language to realize the intended shareable meaning. 

Such formal languages then enable the negotiation of formal 
vocabularies, which, in turn, may be shared among parties in the knowledge 
sharing interaction without being dependent on either the user/agent or its 
context. One example of such a vocabulary may be description logic that 
allows us to make statements holding for some or all entities in a given 
world satisfying a given condition.  

From the point of view of this book (and chapter), we often align the 
ontology management and engineering with the actual design, creation and 
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overall interaction with such formal vocabularies. If we take the Web 
Ontology Language (OWL2) as the current preferred formal vocabulary, then 
ontology engineering is often seen as a synonym to designing and coding 
conceptual commitment about the world or a particular problem in this 
language. Thus, for the purpose of this chapter, user challenge in engineering 
OWL ontologies is broadly definable as a user interaction with a particular 
software product, code, OWL model, OWL-based tool, technique, etc. 

2. USERS IN ONTOLOGICAL ENGINEERING 

In order to illustrate and ground the issues users are facing during the 
process of ontology design, engineering and management, this section 
includes extracts from a larger user study that has been conducted in the 
context of gathering and analyzing requirements in the NeOn project. The 
following sub-sections are based on our earlier workshop publication 
(Dzbor, Motta et al. 2006). 

The existing empirical work on exploring HCI aspects of the ontology 
engineering tools highlights several problems with ontology engineering 
tools. However, at the beginning of the NeOn project we felt that there was a 
need to conduct a novel study, as none of the studies mentioned in section 
2.1 provided the kind of data that can be used as a baseline to inform the 
development of the next generation ontology engineering tools. 

2.1 Motivation and background 

Some work on evaluating tools for ontology engineering has been done 
in the past. For example, Duineveld, Stoter et al. (2000) observed that the 
tools available in the time of their study (around 1999) were little more than 
research prototypes with significant problems in their user interfaces. These 
included too many options for visualizing ontologies, which tended to 
confuse the user and hinder navigation. Moreover, the systems’ feedback 
was found to be poor, which meant a steep learning curve for non-expert 
users. Finally, most tools provided little support for raising the level of 
abstraction in the modelling process and expected the user to be proficient in 
low-level formalisms. 

Pinto, Peralta et al. (2002) evaluated Protégé, one of the leading ontology 
engineering tools currently in use (Noy, Sintek et al. 2001), in several tasks, 
from the perspective of a power user. The authors found the system intuitive 
for expert knowledge engineers, as long as the operations were triggered by 

                                                      
2 Specification of OWL as a W3C recommendation is on http://w3.org/TR/owl-ref 
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them (e.g. knowledge re-arrangement). However, difficulties arose when 
assistance from the tool was expected; e.g. in inference or consistency 
checks. Weak performance was also noted in language interoperability. In 
another survey, Fensel and Gómez-Pérez (2002) also noted issues with tool 
support for operations on ontologies beyond mere editing (e.g. integration or 
re-use). In particular, the authors emphasized the limited ‘intelligence’ of 
current tools — e.g. no possibility to re-use previously used processes in 
current design. Tools expected the user to drive the interaction, with the tool 
imposing constraints rather than adapting itself to users’ needs. 

Yet another study by Storey, Lintern et al. (2004) focused on a fairly 
narrow aspect of visualization support in Protégé and its customization 
models are too complex and do not reflect users’ models of what they would 
normally want to see. Similar observations were made of the users having 
difficulties with description logic based formalisms in general (Kalyanpur, 
Parsia et al. 2005). Again, tools expected detailed knowledge of intricate 
language and logic details, and this often led to modelling errors. 

As we mentioned earlier in the introduction, the existing empirical work 
on exploring HCI aspects of the ontology engineering tools highlighted 
several problems with ontology engineering tools. We conducted a new 
study, because none of the studies mentioned above provided the kind of 
data that can be used to inform the development of the ontology engineering 
tools envisaged by NeOn. Specifically, the studies did not satisfactorily 
address the following key concerns: 

• “Normal” users vs. “Power” users. As ontologies become an 
established technology, it makes less sense to focus only on highly 
skilled knowledge engineers. There are so many organizations 
developing ontologies that it seems safe to assert that indeed most 
ontologies are currently built by people with no formal training in 
knowledge representation and ontology engineering. Therefore, it is 
essential to conduct studies, which focus on “normal users,” i.e., people 
with some knowledge of ontologies, but who are not classified as 
“power users.” 

• Emphasis on ontology reuse. We adopt the view that ontologies will be 
networked, dynamically changing, shared by many applications and 
strongly dependent on the context in which they were developed or are 
used. In such scenario it would be prohibitively expensive to develop 
ontologies from scratch, and the re-use of existing, possibly imperfect, 
ontologies becomes the key engineering task. Thus, it makes sense to 
study the re-use task for OWL ontologies, rather than focusing only on a 
narrow activity (e.g. ontology visualization or consistency checking). 

• Evaluating formal ontology engineering tasks. Studies reported earlier 
focused on generic tool functionalities, rather than specifically assessing 
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performance on concrete ontology engineering tasks. This creates two 
problems: (i) the results are tool-centric, i.e., it is difficult to go beyond a 
specific tool and draw generic lessons in terms of HCI on how people do 
ontology engineering tasks; (ii) by assessing the performance of our 
users on concrete tasks using OWL ontologies, we acquire robust, 
benchmark-like data, which (for example) can be used as a baseline to 
assess the support provided by other tools (including those planned in 
NeOn). 

2.2 Overview of the observational user study 

We conducted an observational study rather than an experiment to 
capture user needs and gaps in the tool support, rather than merely compare 
different tools. As mentioned earlier, NeOn is concerned with several facets 
of networked ontologies, and many of these facets are currently supported to 
a very limited extent. This lack of tools and techniques makes it difficult to 
assess the actual user performance in any of these tasks. However, it enables 
us to acquire generic requirements and insights on a broader ontology 
engineering task or process. 

Ontology is, by definition, a shared artefact integrating views of different 
parties (Gruber 1993a). One form of integration used in this study was 
temporal, where an agent re-used previously agreed ontologies, perhaps from 
different domains. All studied ontologies were public; all were results of 
principled engineering processes and knowledge acquisition, and they all 
modelled domains comprehensible to a ‘normal user.’ The table shows some 
statistical information on the OWL ontologies included in the study. 

Table 2-1. Descriptive features of the ontologies used in the evaluation study: numbers of 
primitives classified as Cl(asses), Pr(operties), and Re(strictions) 
Ontology Cl Pr Re Notes 
Copyright 85 49 128 Mostly cardinality & value type restrictions, some properties 

untyped  
[ http://rhizomik.net/2006/01/copyrightontology.owl ] 

AKT Support 14 15 n/a All properties fully typed, no axioms 
[ http://www.aktors.org/ontology/support ] 

AKT Portal 162 122 130 10 classes defined by equivalence/enumeration, most 
properties untyped 
[ http://www.aktors.org/ontology/portal ] 

 
Two environments were used — Protégé from Stanford University3 and 

TopBraid Composer from TopQuandrant4— these satisfied the initial 

                                                      
3 Extensive details on the Protégé project and tool are available to an interested reader on 

http://protege.stanford.edu 
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requirements from ontologies (e.g. on OWL fragment or visualization 
features). We worked with 28 participants from 4 institutions (both academic 
and industrial). Participants were mixed in terms of different experience 
levels with designing ontologies and with different tools. Each person 
worked individually, but was facilitated by a member of the study team. 
Participants were expected to have knowledge of basic OWL (e.g. sub-
classing or restrictions), while not necessarily being ‘power users.’ They 
were recorded with screen capture software Camtasia, and at the end they 
filled in a questionnaire about their experiences with ontology integration. 

2.2.1 Evaluation methodology 

In our investigation of the ontology engineering environments, we opted 
for a formative evaluation (Scriven 1991). This choice was made mainly to 
inform design of new OWL engineering tools in the context of NeOn. Two 
constraints were observed: (i) gathered data shall not be tool-specific (it was 
not our objective to prove which one tool was best); and (ii) while generic 
tool usability was considered important, measures were expected not to be 
solely usability-centric. In terms of what was analyzed, we selected the 
following levels of analysis (Kirkpatrick 1994): (i) user’s satisfaction with a 
tool, (ii) effectiveness of a tool in achieving goals, and (iii) behavioural 
efficiency. In our study, these categories took the form of questions 
exploring usability, effectiveness, and efficiency categories, to which we 
added a generic functional assessment category. 

Our questionnaire reflected situations that typically appear in the 
literature correlated with enhancing or reducing effectiveness, efficiency, 
usability or user satisfaction (Shneiderman and Plaisant 2004), and covered 
these situations by 36 questions. The remaining 17 questions inquired about 
various functional aspects considered relevant to the NeOn vision; including 
ontology re-use, visualization, contextualization, mapping, reasoning, etc. 

The questionnaire included both open and closed (evaluative) questions. 
The former asked for opinions; the latter used a Likert scale ranging from 
very useful (+1) to very poor (–1). Each question was then expressed 
frequencies and counts — largely in the context of open, qualitative items 
and observations. Positively and negatively stated questionnaire items were 
interspersed to avoid the tendency of people to agree with statements rather 
than disagree (Colman 2001). Nevertheless, this tendency towards agreeing 
appeared during analysis; as was discussed in our preliminary report (Dzbor, 
Motta et al. 2006). 

                                                                      
4 More about TopBraid Composer can be found on http://www.topbraidcomposer.com/ 
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2.2.2 User tasks 

Participants were given three tasks considering different ways of 
integrating ontologies into a network. In Task 1, they were told that the 
Copyright ontology did not formalize temporal aspects, and had to be 
augmented with the relevant definitions from other ontologies (e.g. AKT 
Support). The objective was to review the three given ontologies, locate the 
relevant classes (i.e. CreationProcess and Temporal-Thing), import 
ontologies as needed, and assert that CreationProcess is a subclass of 
Temporal-Thing. 

Task 2 was motivated by pointing to a western-centric notion of any right 
being associated only with a person, which excluded collective rights. 
Participants were asked to review concept copyright:Person, and replace its 
use with deeper conceptualizations from the AKT Portal and AKT Support 
ontologies. In principle, the task asked people to express two types of 
restrictions on property ranges: 

• simple: e.g. for concept Economic-Rights introduce statement  
rangeOf ( agent , Legal-Agent ); 

• composite: e.g. state that  
rangeOf ( recipient , ( Generic-Agent AND (¬ Geo-Political ) ) ). 

 
Task 3 asked people to re-define concept copyright:Collective so that 

formal statements could match an informal description. Participants were 
told to make amendments in the base — Copyright ontology, rather than to 
the other two. We expected they would first create new local sub-classes for 
the concept copyright:Collective, and then make them equivalent to the 
actual AKT classes. Task 3 also comprised a definition of a new property 
(e.g. copyright:hasMember) with appropriate domain and range, together 
with its restriction for class copyright:Collective, so that a collective is 
defined as containing min. 2 persons. 

2.3 Findings from the user study 

This section summarizes some findings from our study. For selected 
categories of measures we give a general summary of observations across 
the whole population, followed by commenting on differences (if any) 
between two common denominators of user performance in knowledge-
intensive tasks — the choice of and the expertise with the tool. Particularly 
interesting is to look at how efficient people felt in different tasks, how they 
were assisted by the help system or tool tips, how the tools helped to 
navigate the ontologies or how easy it was to follow the formalisms used in 
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definitions. Table 2-2 shows general observations, and Table 2-3 compares 
features where differences between tools were observed. 

The efficiency of the two tools was approximately the same. When asked 
about efficient handling of ontology dependencies and navigating through 
them, Protégé users thought they were significantly less efficient. Many 
users were not happy with the abstract syntax of the axiom formulae, which 
was not helped by the inability to edit more complex restrictions in the same 
windows and wizards as the simple ones. 

Table 2-2. Selection of a few general observations across population 
Measure/question –1 0 +1 Total Mean 
providing sufficient information about ontologies 32% 55% 13% 29 –0.172 
support provided by documentation, help 60% 40% 0% 16 –0.500 
usefulness of the tool tips, hints, ... 50% 46% 4% 27 –0.423 
subjective time taken for task 2 25% 55% 20% 31 –0.065 
subjective time taken for task 3 6% 56% 38% 31 +0.300 

Table 2-3. Comparison of attitudes between tools and expertise groups (TB: TopBraid, Pr: 
Protégé, Be: less experienced, Ex: expert); significance threshold: χ2=5.99 at p=0.05 
Measure/question Type Outcome χ2 Sign 
help with handling ontology dependencies tools TB (0.0) vs. Pr (–0.37) 7.65 yes 
useful visualization & ontology navigation 
facilities 

tools TB (–0.33) vs. Pr (–0.63) 6.00 yes 

handling ontology syntax / abstract syntax tools TB (+0.40) vs. Pr (–0.07) 2.33 no 
ease/speed of carrying out integrations experience Le (–0.21) vs. Ex (+0.27) 9.75 yes 
level of visualization and navigation support experience Le (–0.69) vs. Ex (–0.40) 2.40 no 
ontology representation languages, abstract 
syntax, etc. 

experience Le (–0.22) vs. Ex (+0.23) 3.64 no 

 
One qualitative feature in both tools concerns the depth of an operation in 

the user interface. Subjectively, 32% participants felt they had an explicit 
problem with finding an operation in a menu or workspace. The main 
‘offenders’ were the import function (expected to be in File � Import... 
menu option) and the in-ontology search (which was different from the 
search dialog from Edit � Find... menu option). 

Expertise seemed to have minimal effect on the assessment of the 
efficiency dimension. Both groups concurred that while a lot of information 
was available about concepts, this was not very useful, and the GUI often 
seemed cluttered. They missed a clearer access to ‘hidden’ functions such as 
defining equivalence or importing ontology. Non-experts saw themselves 
inefficient due to lack of visualization and navigation support, and also due 
to the notation of abstract DL-like formalism. Experts were at ease with the 
formats; non-experts considered support for this aspect not very good. 

The overwhelming demand was for complying with common and 
established metaphors of user interaction. A quote from one participant sums 
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this potential source contributing to inefficiency: “More standard 
compliance and consistency. The search works differently … usual keyboard 
commands ... don’t always work…” 

In addition to the efficiency of the existing ontology management tools, 
two aspects were evaluated with respect to user experiences: (i) usability of 
the tool (which included accessibility and usefulness), and (ii) overall user 
satisfaction with the tool. The latter included comments regarding user 
interface intuitiveness, acceptability, customization, and so on.  

As Table 2-4 shows, responses in this category are generally negative; 
participants considered the existing support as “very low” or “not very 
good.” Almost invariably, they were dissatisfied with the role of 
documentation, help system, tool tips, and various other tool-initiated hints. 
Support for tool customization — i.e. either its user interface or 
functionality — was also inadequate. A common justification of the low 
scores was (among others) the lack of opportunity to automate some actions, 
lack of support for keyboard-centric interaction, lack of support for more 
visual interactions. As can be seen from these examples, the reasons were 
quite diverse, and to some extent depended on the user’s preferred style. 

Table 2-4. Selection of a few general observations across population 
Measure/question –1 0 +1 Total Mean 
usability/helpfulness of the tooltips, hints, ... 50% 46% 4% 27 –0.423 
usability of tool’s help system 60% 40% 0% 16 –0.500 
support for customization of the tool, its GUI or functionality 48% 44% 8% 25 –0.400 
usability of handling ontology dependency support 31% 66% 3% 27 –0.259 
visualization of imports, constraints & dependencies 58% 39% 3% 28 –0.536 
support for [partial] ontology import 62% 14% 4% 29 –0.739 
useful tool interventions in establishing integrations 48% 52% 0% 26 –0.480 

 
One emerging trend on the tools’ usability was that too many actions and 

options were available at any given point during the integration tasks. On the 
one hand, this refers to the amount of information displayed and the number 
of window segments needed to accommodate it. An example of this type of 
usability shortcoming is the (permanent) presence of all properties on screen. 
On the other hand, while constant presence can be accepted, it was seen as 
too rigid — e.g. no filtering of only the properties related to a concept was 
possible. In fact 32% claimed that unclear indication of inheritance and 
selection was a major issue, and further 14% reported being unable to find 
all uses of a term (e.g., property or concept label) in a particular ontology. 
Other comments related to usability are summarized below:  

• unclear error messages and hints (e.g. red boundary around an incorrect 
axiom was mostly missed);  
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• proprietary user interface conventions (e.g. icons looked differently, 

search icon was not obvious, some menu labels were misleading);  
• lack of intuitiveness (e.g. finding an operation, flagging a concept in the 

ontology so that it does not disappear, full- vs. random-text search);  
• inconsistent editing & amending of terms (e.g. while “subClassOf” was 

visible at the top level of the editor, “equivalentTo” was hidden) 

Table 2-5. Comparison of attitudes between tools and expertise groups (TB: TopBraid, Pr: 
Protégé, Be: less experienced, Ex: expert); significance threshold: χ2=5.99 at p=0.05 
Measure/question Type Outcome χ2 Sign. 
level of overall satisfaction with the tools tools TB (+0.10) vs. Pr (–0.19) 2.67 no 
overall satisfaction with tool’s GUI environment tools TB (+0.10) vs. Pr (–0.24) 3.14 no 
satisfaction with handling dependencies in 
ontologies 

tools TB (0.0) vs. Pr (–0.37) 7.65 yes 

satisfaction with visualization and navigation 
support 

tools TB (–0.33) vs. Pr (–0.63) 6.00 yes 

ease/speed of carrying out integrations tools TB (+0.50) vs. Pr (+0.10) 5.85 no 
effort to get acquainted with the tool experience Be (–0.27) vs. Ex (+0.12) 3.02 no 
satisfaction with support for interpreting 
inferences 

experience Le (0.0) vs. Ex (+0.07) 2.40 no 

support for multiple ontology representation 
formats 

experience Le (–0.22) vs. Ex (+0.23) 3.64 no 

 
As shown in Table 2-5, a significant difference of opinion was in the 

overall satisfaction with the tools, their design and intuitiveness, where it 
was more likely that people complained about Protégé than TopBraid. In this 
context, people tended to be more positive in the abstract than in the specific. 
Responses to specific queries were negative (between –0.500 and –0.100), 
yet overall experiences oscillate between –0.111 and +0.100. As we 
mentioned, the overall satisfaction with the TopBraid environment was more 
positive (some possible reasons were discussed above). 

One case where experience weighed strongly on less experienced users is 
the tool intuitiveness. Probably the key contributing factors were the 
aforementioned non-standard icons, lack of standard keyboard shortcuts, 
ambiguous operation labels, and an overall depth of key operations in the 
tool. Less experienced users also had issues with basic features — e.g. 
namespaces and their acronyms, or ontology definition formalisms. The 
issue with formalisms is partly due to the inability of the tools to move from 
an OWL- and DL-based syntax to alternative views, which might be easier 
in specific circumstances (such as modification of ranges in Task 2). 
Experienced users missed functionalities such as version management —
here less experienced users were probably not clear in how versioning might 
actually work in this particular case. 
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2.4 Lessons learned from the user study 

Technology (such as OWL), no matter how good it is, does not guarantee 
that the application for its development would support users in the right tasks 
or that the user needs in performing tasks are taken on board. At a certain 
stage, each successful tool must balance the technology with user experience 
and functional features (Norman 1998). This paper explored some 
persevering issues with OWL engineering tools that reduce the appeal and 
adoption of otherwise successful (OWL) technology by the practitioners.  

Although the tools made a great progress since the evaluations reported 
in section 2.1, issues with user interaction remain remarkably resilient. The 
effort was spent to make the formalisms more expressive and robust, yet 
they are not any easier to use, unless one is proficient in the low-level 
languages and frameworks (incl. DL in general and OWL’s DL syntax in 
particular). Existing tools provide little help with the user-centric tasks — a 
classic example is visualization: There are many visualization techniques; 
most of them are variations of the same, low-level metaphor of a graph. And 
they are often too generic to be useful in the users’ problems (e.g. seeing 
ontology dependencies or term occurrences in an ontology). 

Table 2-6 highlights a few gaps between what the current tools provide 
and what people see as useful for framing problems in a more user-centric 
way. Some ‘wishes’ (white rows) already exist; e.g. Prompt (Noy and Musen 
2003) for version comparison, but perhaps our findings may further improve 
design of the existing OWL engineering tools. 

For instance, identification of frequently used operations and their 
correlations with errors and mistakes may provide us with opportunities to 
target the support towards most visible sources of user dissatisfaction. The 
most frequent steps in OWL development are the actual coding of definitions 
and import of ontologies (unsurprisingly), but, surprisingly, also search 
(71% users), re-conceptualization of restrictions and editing of logical 
expressions (both 54%), and locating terms in ontologies (46%). Compare 
these operations with the situations requiring assistance from facilitators (in 
Table 2-7). 
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Table 2-6. User attitudes to some functional features missing in existing tools (grey rows) and 
to some proposed extensions (white rows) 

Current presence (grey) vs. wished-for feature User attitude 
Existing support for ontology re-use  –0.097 (not very good) 
Support for partial re-use of ontologies  –0.739 (very poor) 
� flag chunks of ontologies or concept worked with  +0.519 (would be very useful) 
� hide selected (irrelevant?) parts of ontologies  +0.357 (would be useful) 
Existing support for mappings, esp. with contextual boundaries  –0.065 (not very good) 
Management and assistance with any mappings –0.480  (not very good / poor) 
� query ontology for items (instead search/browse)  +0.433 (would be useful) 
� compose testing queries to try out consequences of mappings  +0.045 (would be possibly useful) 
Existing support for versioning, parallel versions/alternatives  –0.200 (not very good) 
Existing visualizing capabilities & their adaptation  –0.536 (very poor) 
� mechanism to propagate changes between alternative versions  +0.519 (would be very useful) 
� compare/visualize different interpretations/versions  +0.700 (would be very useful) 
� visualize also on the level of ontologies (not just concepts)  +0.357 (would be useful) 

Table 2-7. Observations of issues with OWL engineering and user interaction 
Observation Frequency % affected Examples 
Syntactic axiom check � user not alerted 
or not noticing 

21x 64.3% Buttons/icons after axioms misleading; 
Single/double clicks to select, edit, etc 

Testing & understanding (inference, 
meaning) 

26x 64.3% Which inference is the right one?;  
How to check the intended meaning(s)? 

Translate/compose logical operation (e.g. 
equivalence) 

37x 60.7% How to start complex axiom?;  
Stepwise definition? 

Dialogs, buttons,... (confusion, 
inconsistency,…) 

43x 89.1% Buttons/icons after axioms misleading; 
Single/double clicks to select, edit, etc. 

Searching for the class (partial text search 
on labels) 

25x 64.3% Label starts with X different from label 
contains X; namespaces in search?  

Functionality unclear (drag&drop, error 
indication, alphabetic view) 

26x 60.7% Am I in the edit mode?;  
Where is it alerting me about error? 

 
One example we identified is the correlation between an incorrect logical 

conceptualization and confusion caused by ambiguous labels or dialogs. 
Other correlations were between problems with importing an ontology and 
absence or semantic ambiguity of appropriate widgets in the workspace, and 
between difficulties with definitions and the failure of tools to alert users 
about automatic syntactic checks (e.g. on brackets). The translation of a 
conceptual model of a restriction into DL-style formalism was a separate 
issue: 70% were observed to stumble during such definitions. From our data, 
we suggest considering multiple ways for defining and editing axioms (to a 
limited extent this partly exists in Protégé). Any way, DL may be good for 
reasoning, but it is by no means the preferred “medium for thinking” (even 
among ontology designers). This is not a novel finding, similar observations 
were made for other formalisms and their relationship to informal thought 
generation (Goel 1995). 
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Another issue is the gap between the language of users and language of 
tools; a high number of users was surprised by syntactically incorrect 
statements. In 64.3% sessions at least one issue due to syntax (e.g. of 
complex restrictions) was observed. Because of these minor issues they had 
to be alerted to by a facilitator, people tended to doubt results of other 
operations (e.g. search or classification) if these differed from what they 
expected. Lack of trust is problematic because it puts the tool solely in the 
role of a plain editor, which further reduces tool’s initiative. In an attempt to 
restore ‘user trust,’ some tools (e.g. SWOOP) move towards trying to justify 
their results (Kalyanpur, Parsia et al. 2005).  

The extensive use of features in the tools is also an issue increasing 
complexity of user interaction. Both tested tools showed most of possibly 
relevant information on screen at all times. There was little possibility to 
filter or customize this interaction. The granularity at which tools are 
customizable is set fairly high. For instance, one can add new visualization 
tabs into Protégé or use a different (DIG-compliant) reasoning tool, but one 
cannot modify or filter the components of user interaction. 

Clearly, there is some way to go to provide the level of support needed 
by ‘normal’ users engineering OWL ontologies. Our analysis highlighted 
some shortcomings, especially the flexibility and adaptability of user 
interfaces and lifting the formal abstractions. With this study, we obtained a 
benchmark, which we plan to use to assess the support provided by our own 
future tools in 18–24 months. Obviously, we intend to include other OWL 
engineering tools (e.g. SWOOP or OntoStudio) to make the study robust.  

3. USER INTERACTION WITH ONTOLOGIES 

In the previous section we mostly considered one particular category of 
the users with respect to ontologies; namely, those users who want to author, 
design and amend ontologies as a part of some integrative task. This is an 
important group of users; however, these are not necessarily the only users 
who may have a need to interact with networked ontologies. The issue of 
interacting with ontologies effectively and efficiently is much more pressing 
with less experienced users, who carry out an ad-hoc, occasional ontology-
related task — as shown, to some extent by our study reported in section 2. 

Therefore, in this section we explore the problem of user interaction with 
ontologies more in depth, from several angles.  
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3.1 Configurable user interfaces 

One of the findings in the user study we briefly described in section 2.3 
was pointing to the fact that the ontology engineering environments tend to 
be reasonably modular, but they are essentially built alongside “one size fits 
all” strategy. In reality, such a strategy is rare among the successful software 
products. As users within the corporate intranets or outside of companies 
take on different roles, they come across and emphasize different business 
needs from, in principle, the same information content. Subsequently, they 
typically expect the tools of their trade would somehow reflect those 
different business needs. 

One of the most often mentioned features of a new software product is an 
easy customization of its user-facing components. We explore this theme in 
the second half of the chapter on HCI challenges in ontology engineering. 
The quote from a software company’s catalogue (anonymized by the 
authors) below summarizes the point: 

[Our product] provides an easy to configure user interface enabling you 
to meet diverse business needs across your enterprise, as well as support 
localization. [Among other functionalities, the product supports] menu 
localization and support for international languages, enabling and 
disabling functions for users based on their permissions, […] 

Users involved in ontology-driven production of information and 
knowledge need to be equipped with a range of software configurations and 
diverse user interfaces to deliver the outcomes of their work as effectively 
and efficiently as possible. There are two broad strategies how one can 
match the tools to the needs: 

1. different tools for different users and different purposes; 
2. different configurations of one tool or toolkit for different users or 

purposes. 

The two strategies are not mutually exclusive; very often we find that 
users rely on a limited range of tools, and then may have different, 
specialized configurations for some of those tools. Let us briefly consider the 
key advantages and disadvantages of the above approaches: In the former 
situation, tools are well defined but apparently independent of each other. 
This may lead to a proliferation of a large number of highly specialized 
tools, something that is overwhelming and unlikely to alleviate the user’s 
confusion. Moreover, with specialized tools, there is an increasing risk of 
them being mutually less compatible or compatible on a rather cumbersome 
level (e.g. import/export mechanism of various graphical editors is a good 
example of this compatibility issue). The main advantage is that the user will 
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only get to work with tools and interfaces s/he necessarily needs to carry out 
given tasks, and nothing more. 

In the latter situation, we tend to see more complex and multi-functional 
tools that can exhibit a variety of user interfaces and user interaction 
components in different situations. In many tools of this type, we see an 
aggregation of functionalities and a fairly seamless switching between many 
tasks the user may carry out at some point. This is essentially a “one-stop 
shop” approach where the user has (almost) everything they may ever need 
already inside the tool, and only needs to activate different configurations. A 
typical example of this would be editors like Microsoft Word, and its ‘rich 
document editor’ face, as opposed to (say) ‘content revision’ face or ‘mail 
merge and distribution’ face. 

Formally, these notions were explored by Shneiderman (2000) who 
introduced so-called universal usability. While this rather broad issue is 
clearly beyond the scope of this chapter, Shneiderman points to several 
factors that may affect the tool usability. These are factors that vary from 
one user to another, and hence trigger a degree of adaptation to the user 
interface. Importantly, Shneiderman highlights many common factors that 
are not always recognized as valid reasons for UI customization. For 
example, he talks about technological variety (i.e. the need to support a 
range of software and hardware platforms, networks, etc.), about gaps in user 
knowledge (what users know, what they should know, etc.), or about 
demographic differences (skills, literacy, income) or environmental effects 
(light, noise, etc.) 

One approach to achieving more universal usability of a tool is to 
introduce user interface adaptation into the loop. The rationale is that while a 
standard UI may not fit the user completely, it might be tweaked so that it 
gets as closely as possible to the user needs. There are two distinct strategies 
of how UI adaptation may be accomplished. Since this differentiation may 
have impact on what is actually modified in the tool, we decided to include 
this brief detour to generic issues of adaptation. The two strategies 
distinguish between the following types (Kules 2000): 

• adaptive UI: These are systems and user interfaces that are capable of 
monitoring its users, their activity patterns, and automatically adjust the 
user interface or content to accommodate these local differences in 
activity patterns (which may be due to user’s skill, preference, etc.). 

• adaptable UI: These are systems and user interfaces that allow the users 
to control and specify adjustments, and often come with the provision of 
some guidance or help. 

According to the informal definitions, the difference is in the actor; who 
performs the adaptation act. In adaptive UI-s it is the tool, applications or the 
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system that takes the active role; whereas in adaptable UI-s it is the 
human — typically the actual user of the system, but possibly another user 
(such as system administrator). 

Why do we mention user interface adaptation in this context? Ontologies 
are highly structured, formalized artefacts that have sufficient expressiveness 
to describe the structure of a system, tool, or its user interface. Considering 
that such common tools as Web browsers make use of ontological 
formalisms to support customization and thus make life easier for the user, it 
is rather surprising that very little of a similar approach is used to improve 
the tools for interacting with ontologies. 

4. USERS AND ONTOLOGY ENGINEERING  

In this section we briefly sketch some of the existing approaches that 
have been developed mostly in the context of personalization and scalability 
(i.e. the capability to work with large data sets). This overview is intended to 
be informative rather than exhaustive; it is intentionally compiled on a level 
that abstracts from individual tools and method to approaches and strategies. 

As ontologies become more and more complex and as they are integrated 
into networks of ontologies, it is reasonable to investigate the means, which 
would be capable of making a large network of complex ontologies more 
manageable. The customization and personalization of ontologies includes, 
in principle, two areas relevant to ontologies: 

• customization of the view on an ontology, e.g. during exploring a 
network of ontologies. This customization is more or less ad-hoc and the 
results of the customization may be discarded once the user proceeds 
with exploring the ontology. This customization during exploring an 
ontology tries to reduce the complexity of an ontology and only shows 
parts which are relevant for the current user. 

• customization for the purposes of reusing ontologies and integrating 
them into a network with other ontologies according to specific needs 
(e.g. during the ontology deployment, reasoning or design phases). Here 
the results of the customization will often be integrated into the edited 
ontology. 

As one basis for the customization, we analyze and briefly overview user 
profiles and profiling work, followed by techniques for exploring and 
navigating in large data sets (including ontologies), and finally we touch on 
the role of algebraic operators to manipulate the topology or content of 
ontologies. 
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4.1 User profiling 

User profiles are seen here as a way to describe some user properties or 
characteristics and thus as a representation of the context of a user. Such a 
profile may for example provide information about the role of a user, the 
domain of interest or the current task. This information about the context 
helps in a user-tailored information delivery, e.g. by offering personalized 
ontology views. When talking about the user, it is important to mention that 
we can decide to have an abstract user — this would be, in principle, 
corresponding to any member of a group of users in a particular situation. 

A user profile can be constructed in different ways depending on the data 
it includes and the methods used for its construction, including manual, 
semi-automatic and automatic methods. Each of them has some advantages 
and disadvantages. For a review of specific user profile acquisition 
techniques, consider e.g. sources mentioned in (Dellschaft, Dzbor et al. 
2006). Let us focus in this chapter on how such profiles might be deployed 
and used in the context of ontology management. 

In principle we see the role of user profiles as twofold: (i) as a means 
allowing recommendations based on some typicality effects, and (ii) as a 
means having a predefined description on the actions to be applied by the 
system, depending on some predefined user profile characteristic.  

In the former case, it is interesting to acquire information, e.g. about 
which ontology views a given category of users prefers, what level of detail 
they use in annotating documents using that ontology, or which partition of a 
larger ontology they mostly interact with (and for what purpose). 

In the latter case, a user profile may act as a kind of task definition for the 
activity the user is expected to carry out — an example of such a situation 
might be provision of an ontology view that would be less suitable to editors 
but much more efficient to validators. 

There are many profiling systems in existence; most of them developed 
in the context of user interaction with Web documents and Web browsing. 
One example is Lifestyle finder (Krulwich 1997)—a collaborative 
recommendation system as it groups similar users based on the similarity of 
their manually constructed user profiles. It recommends potentially 
interesting Web documents to the user based on the ratings of the documents 
provided by similar users. A similar example is NewsWeeder (Lang 1995), a 
system for electronic Usenet news alerts. 

An example of the semi-automatic approach is OntoGen (Fortuna, 
Mladenic et al. 2006) that constructs a profile from a set of documents 
provided by the user, and then proposes a topic hierarchy (i.e. a simple 
ontological model of the user’s interests) that can then be used e.g. to 
recommend navigational steps to the user (Fortuna, Mladenic et al. 2006) or 
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to visualize a particular collection based on the hierarchy of user interests 
(Grcar, Mladenic et al. 2005). 

User profiling is one of the important aspects for customizing human-
ontology interaction. User profiles can be used to mesh different data 
sources, where the preferences for a data source are based on the user profile 
(initially manually, but possibly adjusted based on the user’s activity). User 
profiling can also be used for providing a personalized view on an ontology 
based on the ontologies previously constructed by the same or a similar user. 
Such a personalized view can be seen as putting ontologies in a particular 
context, which is familiar to the user (and hence, simplifies his or her 
interpretation of the ontology). 

4.2 Navigating in complex conceptual structures 

Since ontologies are often formal artefacts, the need some transformation 
to be comprehensible to the ordinary users. This is rarely straightforward. 
First, ontological datasets are relatively large; they contain thousands of 
statements the user may need to interact with. For example, a fairly simple 
geographic ontology of regions in New York state5 contains as many as 
59,000 unique statements just about congressional districts in a single US 
state. Second, ontologies could be complex structures representing different 
types of relationships. If each of such potential relations is treated as a 
dimension in which allowed values could be depicted, then even a 
moderately complex ontology leads to a multi-dimensional space, which 
poses challenges for navigation and interaction — in particular, when human 
cognition naturally prefers (and is able of coping with) two or three 
dimensions. 

Two strategies that may apply to ontologies are their reduction and 
projection. Where reduction is concerned with showing less at a given point 
in time (in our case, fewer concepts, entities or relationships), projection 
works by showing the same set of concepts, entities and relations differently. 
The two strategies are somewhat complementary. 

4.2.1 Reducing complexity of navigation 

One common reduction strategy has been implemented in a number of 
faceted browsers (but not in the context of ontologies). The key principle of 
this strategy is that large collections (e.g. libraries or galleries) have many 
dimensions according to which they can be viewed, browsed, searched or 
navigated. Thus, faceted navigation is an interaction style whereby users 
                                                      
5 A serialization and a downloadable version of this ontology is available from: 

http://www.daml.org/2003/02/fips55/NY.owl 
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filter an appropriate set of items by progressively, step-by-step selecting 
from valid dimensions of a particular classification. That classification can 
be created according to many principles (including ontology-derived). 

Earlier representatives of this strategy include Flamenco — a portal for 
browsing fine arts collections (Hearst 2000; Yee, Swearingen et al. 2003) or 
mSpace — an access site to a repository about the computer science in the 
UK (Schraefel, Karam et al. 2003). More recent examples include e.g. 
Longwell and Fresnel (Pietriga, Bizer et al. 2006) from MIT’s Simile project 
as representatives of generic frameworks and vocabularies (respectively) for 
faceted navigation through RDF collections and for specifying facets. Other 
recent examples include BrowseRDF (Oren, Delbru et al. 2006), a generic 
RDF browser, or /facet (Hildebrand, van Ossenbruggen et al. 2006), an 
RDF browser used in a manner similar to Flamenco, but in the context of the 
Dutch cultural heritage project. Nonetheless, most of the above tools focus 
on data rather than triple-level graph structures typical for ontological 
concepts and relations. 

User interaction in faceted style usually starts with an overview of the 
browsed collection, which often yields a large number of possibly relevant 
matches. In the subsequent browsing steps, this ‘relevant’ set is structured 
according to selected categories (e.g. locations, styles, themes, etc.). 
Alternatively, the user may narrow the view down by referring to 
hierarchical classification (if available). The navigation may end with 
accessing a particular item from the collection. We use term ’may’ because 
alongside the item the user always sees all other categories and metadata that 
provide bridges to alternative collections. 

A slightly different view on the principle of faceted navigation is 
advocated by the authors of CS AKTive Space and the family of similar 
mSpace-based applications (Shadbolt, Gibbins et al. 2004). The faceted 
views for browsing the collections are fairly typical, but there is one pane 
that also uses a projection strategy — geographic data are shown naturally, 
i.e. on a map. A useful side effect of such projections is that they enable the 
user to express relations very succinctly (including fuzzy ones such as near 
or in the South). Unlike Flamenco, mSpace is more tightly linked to 
ontologies — they act as the primary classification of different facets that are 
available to the user. 

To explore the role of spatial metaphors in navigating complex structures 
we point e.g. to work by Mancini (2005), who experimented with ways how 
the same content may yield different interpretation if presented (and 
navigated) in a spatially different manner. Nevertheless, the use of such 
techniques for ontology management needs further research, before we are 
able to link them to particular use case scenarios and requirements. More 
details on how faceted browsers may assist ontology management has been 
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provided in (Dellschaft, Dzbor et al. 2006), which also formed the base for 
this section. 

In general, what faceted browsers like Flamenco support rather well is 
the iterative formulation of the search queries or navigational goals. Key 
advantage of this technology is the step away from forcing the user to go 
through deep, complex hierarchies in order to find items they are interested 
in. Users only navigate to the next slice by following some conceptual clues 
(e.g. sub-categories or orthogonal views). Arguably, faceted navigation 
seems to be a more natural way of coping with messy, conceptually complex 
space, than a rigid, hierarchical tree-like structure. 

Thus, the “divide and conquer” strategy also works in the context of 
complex conceptual spaces such as ontologies. What is hard to visualize at 
once because of variability and differences between different relationships, 
can be split into sequences of partial visualizations through which it is easier 
to move and which are also more comprehensible to the end user. On the 
other hand, faceted browsers suffer from the scaling issue; i.e. they work 
reasonably well with a few well-defined facets that can be arbitrarily 
combined by the end user. For instance, CS AKTive Space used only three 
key (i.e. navigable) dimensions (location, topic and institution). In Longwell, 
deployed for MIT OpenCourseWare, there are similarly three dimensions 
(level of study, teacher and keywords). An ongoing tension emerges between 
offering as many facets to the user as possible while simultaneously helping 
to reduce navigational complexity. 

4.2.2 Projections for large ontological data sets 

In addition to conceptual and relational complexity that has been tackled 
by the research into faceted navigation, another similarly hard task is to 
navigate through large datasets. A number of projections were proposed to 
tackle this. In particular, the fish-eye metaphor enables customizable 
navigation; it uses different properties of the objects in a knowledge base to 
create clusters of different granularity and of different semantics. For 
example, Komzak and Slavik (2003) illustrate this capability to handle large 
networks of diverse but conceptually related data in the context of 
visualizing the 200k strong student population of The Open University in the 
UK, which can be shown on a geographic, per-faculty, per-program or per-
course basis. 

The strategy relies on showing the contextual fringe of a part of the 
semantic network not corresponding to a particular user’s query or intention 
using more coarse-grained clusters than the part that actually corresponds to 
the query and is currently in focus. The authors also open up the context-
focus metaphor (Lamping, Rao et al. 1995), so that each particular focus 
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(fine-grained view) can be embedded into an arbitrary context (coarse-
grained view). 

Another algorithm based on the focus-context metaphor is SpaceTree 
(Plaisant, Grosjean et al. 2002). SpaceTree is a tree browser to some extent 
similar to hyper trees (Lamping, Rao et al. 1995). It addresses one difficulty 
of the hyperbolic geometry; namely constant updating of the visual 
representation, which makes it hard for the user to create a mental map of the 
ontology, hierarchy or taxonomy. SpaceTree uses dynamic rescaling of tree 
branches to fit within a constrained space; miniature tree icons are used to 
indicate the depth, breadth and size of the sub-trees hidden behind a given 
node. 

A different example for projecting ontologies is provided by the “crop 
circles” metaphor (Parsia, Wang et al. 2005). As with the fish-eye, this 
metaphor also shows some implicit topography in an overview mode. In 
CropCircles classes and partitions are represented as circles. One can hover 
over a particular node in the visualization to see the class it actually 
represents. By clicking on a class one can quickly highlight its immediate 
neighborhood (children, parents). Also, zooming in and out is easily 
supported in this view, and as the recent study from Wang and Parsia (2006) 
showed, the metaphor in some cases could outperform other visual 
techniques (especially in the context of viewing richly interlinked and deep 
ontologies). 

On a more traditional level, ontologies are often perceived by many 
developers, researchers and users as predominantly hierarchies of subsumed 
concepts; i.e. structures where one concept is a kind of another concept (as in 
“Ford is a Car”). Hence a lot of effort was put into navigating these, so-
called isA structures. Techniques like IsaViz6 focus on the structurally 
dominant relationship in any ontology (subClassOf). Two key shortcomings 
of this approach are: (i) its usefulness rapidly falls with the depth of a 
hierarchy, and (ii) very few graphs actually have a neat hierarchical 
structure. The isA graphs make visually interesting demonstrations, but by 
definition, they do not contain various lateral or horizontal relations 
(Brusilovsky and Rizzo 2002). 

Some of the more recent developments in the field of ontology 
visualization took an approach more centered on the user needs. A good 
example of this is Jambalaya (Ernst, Storey et al. 2003), a project that started 
with the aim to visualize rich ontology graphs and was initially driven by the 
technological needs. However, at the application re-design stage, the needs 
of real users were considered for particular audiences comprising the 
biologists in a large national research center. These requirements came from 
observing the actual users — biologists, and conjecturing potentially useful 
                                                      
6 More information available from http://www.w3.org/2001/11/IsaViz 
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functional requirements from these observations. As a result, Jambalaya is 
more balanced in addressing a range of users needs on an ontology 
visualization package. 

One the level of underlying technology, Jambalaya’s visualization is still 
based on the metaphor of a graph, but allows more customization of what 
can be visually depicted. Particularly its FilmStrip metaphor (Ernst, Storey et 
al. 2003) suggests an interesting compromise between data overviews and its 
specific context. Yet, due to realizing this idea through showing the relevant 
information as nodes, the outcome is full of boxes and overlapping edges. 
These often achieve the opposite of a positive user experience, as the 
overlapping graph sub-structures may easily obscure much of the underlying 
semantic structure. 

Many practical ontologies use a range of relationship; e.g. UK Ordnance 
Survey reports on their use of a range of ontological relationships that may 
easily create issues if inappropriately visualized (Dolbear, Hart et al. 2006). 
In particular, they highlight issues with fairly common geo-spatial 
relationships like contained within, next to or surrounded by. In each of the 
cases illustrated, merely showing two nodes from the low-level data 
representation linked with a declared or inferred labeled arc is not of much 
use. For instance, in some cases objects such as fields may be both 
surrounded by and contained within and be inside of a wall. However, if 
field F is contained within something else (e.g. wall), by definition it cannot 
be next to another field F,’ since they would need to share the ‘container.’ 
However, to anybody visualizing a dataset containing fields F and F’ it 
makes perfect sense to ‘ignore’ the dividing walls and talk just about the 
fields.  

4.2.3 Benefits of navigational and visualization techniques 

Cognitive studies, one of the recent examples is a study by Demian and 
Fruchter (2004), show that there are several mutually not fully compatible 
requirements on interacting through visual user interfaces:  

• a need to find a particular item (e.g. knowing some of its properties),  
• a need to explore the context in which an item is defined (e.g. what does 

it mean if we say that “Ford is a Car”), and  
• a need to establish the difference between two or more items, which may 

include temporal differences due to evolution or various conceptual 
differences (e.g. “Ford Transit is a Ford, but not a Car, and this is 
because…”)  

The simple IsaViz and related techniques basically address only the 
second need identified above, and even that to a very small extent. The 
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implications of the discussion in the above paragraphs are that there is 
unlikely to be one perfect method or technique for scaling up the navigation 
through structured datasets. What is more likely to work is reusing familiar 
metaphors, such as the FishEye projections or CropCircles. However, it 
seems equally important to use these metaphors at the right point during the 
process of navigating ontologies. Crop Circles, for instance, seem to fit best 
if one is interested in seeing broad relationships among several ontologies. 
Map-like FishEye projections, on the other hand, seem to show a finer level 
of granularity — e.g. when one wants to explore the relationship of 
networked ontologies to a particular concept in one ontology. 

One approach that has not been mentioned so far, but which actually 
could combine the need of dealing with large-scale datasets with the need to 
simplify the ontological definitions, is inspired by maps and mapping 
metaphor. By definition, any map is essentially a projection of a particular 
world (most often a landscape) onto a paper (or screen). One can imagine 
creating such domain landscapes from several different perspectives. For 
instance, a landscape of research topics in Europe is likely to look somewhat 
differently from the landscape of UK’s football or the landscape of great 
maritime voyages. 

Assume we have several pre-computed landscapes available that show 
the key terms of a particular domain (an example is shown in Figure 2-1), 
their links, relationships, closeness, etc. When we take one or several 
ontologies, we can cover these domains with the given ontologies. In some 
cases, the coverage would be better and more precise than in others. 
Different ontologies would be positioned into different regions of the 
landscape — dependent on which landscape the user takes as a foundation 
for his or her navigation. Although we have given this example with 
ontologies in general, most of the current tools deal only with data (possibly 
annotated using ontologies). Hence, adaptations of the familiar techniques 
are needed to apply to ontologies as topological structures, not only as data 
sets. 

Another interesting strategy is motivated by work done by Collins, 
Mulholland et al. (2005) on spotlight browsing. The principle of this 
navigation strategy is again based on a metaphor — a torch throwing a beam 
of light. The user selects a resource or a concept from a particular collection; 
then the collection is dynamically restructured so that it conveys interesting 
properties, clusters, etc. that may be relevant to the initial ‘spot.’ These 
additional items and concepts are then structured around the original spot by 
calculating their semantic closeness. The navigation is then equivalent to 
shedding a light beam (as shown in the mockup in Figure 2-1), which puts 
certain concepts into light (i.e. into navigable focus) and certain other items 
into shadow (i.e. into non-navigable periphery). 
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Figure 2-1. Mock-up of a 2D rendered landscape with two ontologies broadly covering and 
mapping different sections of it. Green areas roughly correspond to different ontologies and 
red crosses to selected terms whose distance/mutual positions depend on a particular corpus. 

4.3 Customizing ontologies 

One of the early works toward ontology customization came from Mitra 
and Wiederhold (2004), who proposed a modularized approach to creating 
ontologies as this would ease ontology reuse and would help breakdown the 
required effort into smaller, manageable pieces. To that goal, they describe a 
general idea of ontology customization operators that would support such a 
modularized approach and help combine the modules to larger ontologies. 
Examples of their operations include, e.g.: 

• selection from an ontology (there are different criteria for this); 
• intersection of several ontologies (i.e. a common denominator); 
• union or extension of several ontologies; 
• differentiation or discrimination between ontologies, etc. 

In addition to the binary or n-ary operations, there is an important set of 
unary operations, those working on a single ontology. It is this particular set 
that is of interest in the context of our objective discussed in this chapter. For 
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example, work by Jannink, Mitra et al. (1999) describes four binary and four 
unary operators. Among them are some interesting unary operators: 

• summarize — centralizes the ontology into groups of similar concepts; 
• glossarize — lists terms subordinate to a given concept without any of 

the recognition of the sub-structure; 
• filter — extracts instances from ontology according to a given predicate; 
• extract — reduces concepts and the possibly corresponding instances 

from the ontology according to a given predicate/condition. 

Particularly useful operations, from the perspective of reducing ontology 
complexity, are the first two operations: summarization and glossarization. 
Both essentially drawing on the latter two operations, but providing useful 
interpretative viewpoints on a complex conceptual structure. In this chapter 
we are not going into more depth with regard to customization operations 
and how they may be realized, a brief overview of some tools and their 
support for this task is discussed, for instance, by Dellschaft, Dzbor et al. 
(2006). 

Nonetheless, let us at least mention how the operators mentioned above 
might be related to section 4.1 (user profiles) and section 4.2 (ontology 
navigation). In both previous sections we relied on the fact that a part of the 
ontology is known, but we haven’t really said how such parts might be 
obtained. For example, for the spotlight or fish-eye facility, we may need a 
central, in-focus portion of an ontology together with several summaries of 
the surrounding contextual fringes. 

These requirements may be directly linked to the aforementioned 
operations for ontology customization — extraction (to get a focus area) and 
summarization (to obtain meaningful but brief summaries of what lies 
around the focal point). Hence, in general, the techniques described in this 
section may be seen as data feeds for the purpose of visualization and 
navigation methods, which in turn may act as points where the user may 
make choices, which could be captured in a specific profile. 

Next we shall present how the three apparently independent areas may 
relate together in a kind of user support “stack.” 

4.4 Illustrative scenario — putting it all together 

Imagine we work with several ontologies, which we want to navigate. 
Among others we have FishBase, AgroVoc, FIGIS, and other ontologies 
typically used by agricultural experts7. Let us assume our expert wants to 
edit parts of the ontology related to Albacore tuna. These need to be located, 
                                                      
7 To learn more about these ontologies visit http://www.fao.org/fi 
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extracted, and presented appropriately, because the number of related terms 
is potentially exponentially large. 

First, large ontologies may be reduced so that they contain the minimal 
number of concepts surrounding the albacore tuna, which are still 
ontologically complete and sound. This may be achieved by applying one of 
the ontology reduction/extraction operators mentioned in section 4.3. The 
extraction may find overlaps and possibly generalizations of term subsets, so 
that the diversity could be expressed using a smaller number of concepts. 

Different alternative navigational paths can then be visually summarized 
in a manner following Figure 2-1. The initial position of the yellow “light 
beam” would reflect that exploratory path through the concept cloud that 
seems to be best covered by the existing fishery ontologies. The numbers in 
superscript in the figure may e.g. refer directly to the internal formal 
resources referring to a particular theme (e.g. FIGIS, AgroVoc, etc.). In 
addition, the weight of the terms is given by their ontological reliability and 
provenance — where our expert may quickly see that the fish species are 
particularly well conceptualized. 

 

Figure 2-1. Mock-up of an ontology summary view showing concepts related to the focal 
term (Albacore) and ontologies covering these terms. Typefaces may reflect e.g. 
trustworthiness of terms against ontologies with same italic/bold typeface on the right. 

In the shape as shown in Figure 2-1, an expert may easily see different 
dimensions corresponding to diverse ontological relationships around the 
concept of albacore tuna. Such a conceptual summary space may be easily 
reorganized without too much cognitive overhead on the part of our expert. 
For instance, re-pointing the beam towards the red section (which may 
denote some ontological inconsistency), it is possible to rapidly refine a 
particular type of ontological relationship. In our case, assume we target the 
locality and fish habitat relations. An outcome of such an action is sketched 
in Figure 2-2, where one sees more relevant ontologies, different concepts 
emerging in focus, and others fading into the fringe. 
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Thus, a typical use case applying the three layers of user-centred 
ontology management we discussed in this section, presents a mesh of 
several familiar techniques. The three areas we mentioned — user profiling, 
navigation and visualization techniques, and customization operators — can 
be seen as three layers of a stack, which influence each other in a variety of 
ways. For example, based on a user profile, one may prefer a particular 
navigational technique; such a technique may need to draw upon a specific 
customization operation. That, in turn, may help keep the profile up to date, 
etc. Hence, the three layers addressing complex user issues in our illustrative 
scenario are manifested in the following ways:  

 

Figure 2-2. Mock-up of the repositioned focus of related terms and ontologies covering these 
terms 

• User profiling techniques: 
o acquiring user and group profiles; 
o using machine learning to manage user profiles; 

• Customized, abstract-level interaction with ontologies: 
o hiding the low-level aspects of several ontology engineering tasks; 
o making sense of links and relations within/between ontologies; 
o ontology visualization on the level of domain coverage; 
o spotlight browsing and other less common browsing extensions;  

• Ontology customization operations: 
o reducing ontology complexity;  
o modularization and view customization based on user-selected 

criteria;  
o customization operations such as module reduction, compounding, 

differencing, etc. 
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5. CONCLUSIONS 

In this chapter we briefly covered the broad and rather complex area of 
human-ontology interaction. We started with reviewing generic tenets of 
HCI and their relevance to ontology management. We then presented some 
empirical evidence highlighting the fact that the existing ontology 
engineering tools are still at a very early developmental stage (from the 
software lifecycle point of view). We concluded this part with highlighting 
several functional opportunities that seem to be missing in the existing tools 
for ontology management, in particular for ontology engineering. 

Then we offered an exploratory survey of some areas that are not 
commonly associated with ontological engineering, and considered what 
roles these techniques may play in making the human-ontology interaction 
more mainstream and more acceptable for so-called ordinary users. In 
particular, we started with user profiling, elaborated on the use of data 
visualization, navigation and exploration techniques, and briefly touched on 
the need to investigate ontology customization operations and methods, as 
the foundation of our triple stack of technologies that may make life of the 
user easier.  
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Abstract: In this chapter we examine tools for ontology management. A state of the art 
analysis of the currently existing tools like editors, browsers and reasoners 
shows a number of deficits like many isolated tools, which cover only a small 
part of the lifecycle. Thus there is the need for an integrated environment for 
ontology management. Based on these deficits we define for such an 
integrated environment critical requirements, which cover the whole 
engineering lifecycle of large scale ontologies in a distributed environment. 
The NeOn architecture — a reference architecture for ontology management 
tools — addresses these requirements through a layered and extensible 
architecture. It enhances ontology management techniques with mechanisms 
for large distributed semantic applications. It also opens traditional closed 
ontology management tools with a service-based integration into scalable 
standard infrastructures. The NeOn toolkit as the reference implementation of 
the NeOn architecture resolves the deficits of these tools concerning the stated 
requirements 

Keywords: Ontology management; OWL; reasoner; registry; repository; rules 

1. INTRODUCTION AND MOTIVATION 

Ontology management tools are needed for the development of semantic 
applications especially in the growing corporate Semantic Web, which 
comprises the application of semantic technologies in an enterprise 
environment. The main infrastructure components needed are tools to 
develop ontologies and reasoners to process these ontologies. The 
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functionality of development tools is currently mainly focussed on editing 
and browsing ontologies. A broad range of tools and a large common core of 
features have emerged in recent years. Opposite to that, reasoners as the 
other established ontology infrastructure, have quite small core functionality. 
Here the activities concentrate more in the area of the supported ontology 
languages and on efficient realisations of the reasoning process. 

Analyzing the state-of-the-art ontology management tools, we observe 
that the evolution of semantic technologies has led to a number of concrete 
implementations to support specific ontology engineering activities and that 
in particular the initial development of single, static ontologies is well 
supported.  

However, popular tools available today for ontology development are 
limited with respect to (i) lifecycle support, (ii) collaborative development of 
semantic applications, (iii) Web integration, and (iv) the cost-effective 
integration of heterogeneous components in large applications. 

While typically today’s environments are ‘closed,’ and focus on a single 
or a few individual aspects/phases of the lifecycle, we require an 
environment that adequately supports the developer user loop over the 
lifecycle of networked ontologies.  

The NeOn project1 addresses those aspects. NeOn is a large European 
Research project developing an infrastructure and tool for large-scale 
semantic applications in distributed organizations. Within NeOn, we aim at 
advancing the state of the art in ontology management by developing a 
reference architecture. Particularly, we aim at improving the capability to 
handle multiple networked ontologies that are created collaboratively, and 
might be highly dynamic and constantly evolving. This is achieved by 
providing — in a major integrative effort — an infrastructure for networked 
ontology management capable of suiting the community’s needs. The heart 
of this infrastructure is the NeOn Toolkit2 for engineering contextualized 
networked ontologies and semantic applications. 

In this chapter, we will first provide an overview of the state-of-the-art in 
management tools in the subsequent Section 2. We then analyze requirements 
that modern ontology management tools must meet in order to support the 
lifecycle of ontologies in networked, distributed, and collaborative 
environments in Section 3. In Section 4 we present an overview of the NeOn 
reference architecture for ontology management in large-scale semantic 
applications. We conclude with a summary in Section 5. 

                                                      
1 http://www.neon-project.org/ 
2 http://www.neon-toolkit.org/ 
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2. STATE OF THE ART 

In this section we provide an overview of state-of-the-art ontology 
management tools. We distinguish between development tools and 
infrastructure components. 

2.1 Ontology infrastructures 

In this section we provide an overview on state-of-the-art reasoners and 
repositories. Functionality-wise there is a clear distinction between reasoners 
and repositories. 

While repositories aim at being able to efficiently store and retrieve large 
collections of data (i.e. managing explicit facts), reasoners focus on 
deduction procedures to derive implicit knowledge.  

Thus independent reasoner and repository realisations can be normally 
integrated via defined interfaces. However for efficient large-scale ontology 
support, repository and reasoner realizations have often some of the other 
functionality. For example ontology repository realisations provide database-
like functionalities with (typically limited) inferencing support. In turn, 
many reasoner realisations rely on an integrated repository.  

In the following, we start with an overview on existing reasoners, where 
we discuss the supported ontology languages, their reasoning approaches, 
availability and interfaces. The overview is partially based on the 
Description Logic Reasoner site3. 

• Cerebra Engine is a commercially developed C++-based reasoner. It 
implements a tableau-based decision procedure for general TBoxes 
(subsumption, satisfiability, classification) and ABoxes (retrieval, tree-
conjunctive query answering using an XQuery-like syntax). It supports 
the OWL-API and comes with numerous other features.  

• FaCT++ is a free open-source C++-based reasoner for SHOIQ with 
simple data types (i.e., for OWL-DL with qualifying cardinality 
restrictions). It implements a tableau-based decision procedure for 
general TBoxes (subsumption, satisfiability, classification) and 
incomplete support of ABoxes (retrieval). It supports the Lisp-API and 
the DIG-API.  

• KAON2 (Motik and Sattler, 2006) is a free (free for non-commercial 
usage) Java reasoner for SHIQ4 extended with the DL-safe fragment of 
SWRL. It implements a resolution-based decision procedure for general 

                                                      
3 http://www.cs.man.ac.uk/~sattler/reasoners.html 
4 That is a special description logic. For an overview see http://www.cs.man.ac.uk/~ezolin/ 

logic/complexity.html. 
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TBoxes (subsumption, satisfiability, classification) and ABoxes 
(retrieval, conjunctive query answering). It comes with its own, Java-
based interface, and supports the DIG-API.  

• OntoBroker is a commercial Java based main-memory deductive 
database engine and query interface. It processes F-Logic ontologies and 
provides a number of additional features such as integration of relational 
databases and various built-ins. The new version of OntoBroker offers 
the KAON2 API. 

• Pellet (Sirin et al., 2007) is a free open-source Java-based reasoner for 
SROIQ5 with simple data types (i.e., for OWL 1.1). It implements a 
tableau-based decision procedure for general TBoxes (subsumption, 
satisfiability, classification) and ABoxes (retrieval, conjunctive query 
answering). It supports the OWL-API, the DIG-API, and Jena interface 
and comes with numerous other features.  

• RacerPro is a commercial (free trials and research licenses are available) 
lisp-based reasoner for SHIQ with simple data types (i.e., for OWL-DL 
with qualified number restrictions, but without nominals). It implements 
a tableau-based decision procedure for general TBoxes (subsumption, 
satisfiability, classification) and ABoxes (retrieval, nRQL query 
answering). It supports the OWL-API and the DIG-API and comes with 
numerous other features. 

• OWLIM is semantic repository and reasoner, packaged as a Storage and 
Inference Layer (SAIL) for the Sesame RDF database. OWLIM uses the 
TRREE engine to perform RDFS, and OWL DLP reasoning. It performs 
forward-chaining of entailment rules on top of RDF graphs and employs 
a reasoning strategy, which can be described as total materialization. 
OWLIM offers configurable reasoning support and performance. In the 
“standard” version of OWLIM (referred to as SwiftOWLIM) reasoning 
and query evaluation are performed in-memory, while a reliable 
persistence strategy assures data preservation, consistency and integrity. 

In the following we additionally discuss two implementations of 
ontology repositories: Jena and Sesame are the two most popular 
implementations of RDF stores. They play a separate role, as their primary 
data model is that of RDF. However, they deserve discussion, as they offer 
some OWL functionalities and limited reasoning support.  

• Sesame (http://openrdf.org, Broekstra et al., 2002) is an open source 
repository for storing and querying RDF and RDFS information. OWL 
ontologies are simply treated on the level of RDF graphs. Sesame 

                                                      
5 That is another special description logic. For an overview see 

http://www.cs.man.ac.uk/~ezolin/logic/complexity.html. 
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enables the connection to DBMS (currently MySQL, PostgreSQL and 
Oracle) through the SAIL (the Storage and Inference Layer) module, and 
also offers a very efficient direct to disk Sail called Native Sail. Sesame 
provides RDFS inferencing and allows querying through SeRQL, RQL, 
RDQL and SPARQL. Via the SAIL it is also possible to extend the 
inferencing capabilities of the system. (In fact, this is how the OWLIM 
reasoner is realized.) The main ways to communicate with the Sesame 
modules are through the Sesame API or through the Sesame Server, 
running within a Java Servlet Container.  

• Jena is a Java framework for building Semantic Web applications 
(http://jena.sf.net). It offers the Jena/db module which is the 
implementation of the Jena model interface along with the use of a 
database for storing/retrieving RDF data. Jena uses existing relational 
databases for persistent storage of RDF data; Jena supports MySQL, 
Oracle and PostgreSQL. The query languages offered are RDQL and 
SPARQL. Just as in Sesame, the OWL support is realized by treating 
OWL ontologies as RDF graphs. However, in addition Jena also 
provides a separate OWL API and allows integration with external 
reasoners, such as Pellet. 

2.2 Ontology development tools 

A clear focus of current ontology management tools is to support the 
development of ontologies with a wide range of editing features. The 
following description of ontology tools is not meant to be complete. Instead 
we chose tools which represent different philosophies due to their history, 
their target users, etc.  

Starting with Protégé as probably the most popular ontology 
development tool we describe an environment with a long history and a large 
number of features which go beyond pure editing of ontology-files. Other 
environments supporting a range of tasks in the broader context of ontology 
development include the commercial tools such as TopBraid Composer™. 
We then present tools that focus on certain aspects, such as providing a 
native OWL editor reflecting its characteristics as Semantic Web language 
(SWOOP), offering a rich graphical interface (Altova Semantic Works™) or 
rule-support and semantic integration (OntoStudio®).  

While most of the tools focus on RDF(S) and/or OWL as ontology 
language, two of the presented environments support other languages. 
Protégé as a hybrid tool supports its own frame-based representation as well 
as OWL and RDF(S). The frame-based format, which from a historical point 
of view is the “original” native representation of Protégé, is related to 
formats used in expert system shells. OntoStudio® offers a couple of 
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functionalities based on the F-Logic language, which mainly concerns the 
creation and management of rules. The latter functionalities differ from the 
rule-features some of the other tools offer, since those support SWRL rules 
as an extension to OWL ontologies. 

The following sections focus on the characteristics of the tools from a 
user’s perspective. The last sections provide a comparison of the core 
features and characterize the current state of ontology development tools. 

2.2.1 Protégé 

Protégé 3.2 (Gennari et al., 2002) is the latest version of the Protégé 
OWL editor (Knublauch et al., 2004), created by the Stanford Medical 
Informatics group at Stanford University. Protégé is a Java-based open 
source standalone application to be installed and run a local computer. It 
enables users to load and save OWL and RDF ontologies, edit and visualize 
classes, properties and SWRL rules (Horrocks et al., 2004), define logical 
class characteristics as OWL expressions and edit OWL individuals. 

With respect to the supported languages Protégé is a hybrid tool. The 
internal storage format of Protégé is frame-based. Therefore Protégé has 
native frame-support. The support for OWL is provided by a special plugin 
that fits into the Protégé plugin architecture. Another example of plugin is 
the versioning support in Protégé (Noy et al., 2004). 

The Protégé-OWL API is built on top of the frame-based persistence API 
using “frame-stores.” The API provides classes and methods to load and 
save OWL files, to query and manipulate OWL data models, and to perform 
reasoning based on Description Logic engines. The API is designed to be 
used in two contexts: (1) development of components that are executed 
inside the Protégé UI, and (2) development of stand-alone applications (e.g. 
Swing applications, Servlets or Eclipse plugins). 

The OWL APIs implementation rely both on the frame-based knowledge 
base for low level (file or DBMS based) triple storage, and both on the Jena6 
APIs for various services, such as OWL parsing and data type handling. 

The Protégé-OWL API can be used to generate a Jena Model at any time 
in order to query the OWL model, for example by means of the SPARQL 
RDF query language (Prud’hommeaux et al., 2007). Reasoning can be 

                                                      

6 Jena, developed by HP Labs, is one of the most widely used Java APIs for RDF and OWL 
(http://jena.sourceforge.net/). 
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performed by means of an API which employs an external DIG7 compliant 
reasoner, such as RACER, FaCT++, Pellet or KAON2. 

 

Figure 3-1. Protégé 

Protégé offers a proprietary framework for plugins enabling users to 
extend the tool. The possible plugins include custom widgets as well as 
additional storage backends. In contrast to platforms like Eclipse there is a 
predefined set of possible extensions, which excludes “plugins of plugins.” 

Protégé has gained much popularity over the years and has a large user-
base. Consequently a large number of plugins is available. The standard 
distribution contains plugins for graph-based visualization, import of 
different formats and many more. Additional plugins offer for example 
ontology merging functionalities. Apart from the community support 
through the Protégé website and mailing lists, there are Protégé regular user 
conferences.  

                                                      

7 The DIG Interface (http://dig.sourceforge.net/) is a standardised XML interface to 
Description Logics systems developed by the DL Implementation Group 
(http://dl.kr.org/dig/). 
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For historical reasons Protégé has not been designed as a native OWL 
tool. As previously mentioned the OWL support is built on top of the frame-
based storage API, but it also uses partly the Jena API for certain tasks. 
Protégé builds on a bridge between its internal triple store and the Jena API. 

While Protégé offers a unique look and feel for both, frame-based 
ontologies and OWL ontologies, the implementation of an OWL API on top 
of a frame-based API has significant disadvantages over the design of a 
native OWL API. Consequently the next generation of Protégé OWL, which 
by the time of writing this text was only available as a prototype, is a 
standalone tool using a “pure” OWL API. 

2.2.2 Altova SemanticWorks™ 

SemanticWorks™ is a commercial OWL editor offered by Altova8. The 
most outstanding feature of the tool is the graphical interface. 
SemanticWorks™ supports the visual editing of OWL and RDF(S) files 
using a rich, graph-based multi-document user interface. The latter supports 
various graphical elements including connections and compartments. 

The visualization of ontologies utilizes very similar mechanisms from the 
other Altova products, which are XML-based. This means they are syntax-
oriented. There is for example hardly any difference between the 
visualization of meta-objects of OWL like owl:Class and a user class. This 
makes it difficult to get an overview on the user content of an ontology. 

Ontologies can be saved as .rdf, .rdfs, or .owl files and can be exported in 
their RDF/XML and N-Triples formats. 

SemanticWorks™ does — in contrast to other tools presented in this 
section — not include direct interactions with reasoners for consistency 
checking, debugging, query processing etc. Thus the tool might be seen as a 
pure editor, rather than a development tool, especially when compared to 
tools like SWOOP. The latter also focuses on the creation and management 
of OWL-files, but includes for example debugging capabilities. The strength 
of SemanticWorks™ is the graphical interface with its navigation 
capabilities (e.g. dynamic expansion of elements with automatic layout). 

2.2.3 TopBraid Composer™ 

TopBraid Composer™ is a modelling tool for the creation and 
maintenance of ontologies9. It is a complete editor for RDF(S) and OWL 
models. TopBraid Composer™ is built upon the Eclipse platform and uses 
Jena as its underlying API. The following list contains some of the 

                                                      
8 At the time of this writing, SemanticWorks™ 2007 is the latest version available.  
9 At the time of this writing, the TopBraid Composer™ is available as version 2.2. 
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characteristics of the tool. It is implemented as an IDE-application using the 
Eclipse platform with all its advantages (such as the plugin concept). 
TopBraid Composer™ supports consistency checks and other reasoning 
tasks. The system has the open-source DL reasoner Pellet built-in as its 
default inference engine, but other classifiers can be accessed via the DIG 
interface.  

 

Figure 3-2. Altova SemanticWorks 

Historically the development of TopBraid Composer™ has its roots in 
Protégé OWL10. Thus some of the concepts of TopBraid™ are similar to 
those of Protégé, such as the generation of schema-based forms for data 
acquisition. The most obvious difference from a technical perspective is the 
usage of the Eclise platform as a base and the lack of the frame-based part. 

                                                      
10 As pointed out on the TopBraid website mid of 2006: 

http://www.topbraidcomposer.com/tbc-protege.html 
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The latter allows TopBraid Composer™ to build on an OWL/RDF(S) based 
infrastructure, but excludes the support for frame-based technologies. 

TopBraid Composer™ offers functionalities going beyond the creation 
and management of OWL/RDF(S) files. This includes the import of 
databases, XML-Schemas, UML and spreadsheets as well as a basic support 
for rules. The system supports rules in either the Jena Rules format or 
SWRL. Both types of rules are executed with the internal Jena Rules engine 
to infer additional relationships among resources. Rules can be edited with 
support of auto-completion and syntax checking. 

 

Figure 3-3. TopBraid Composer™ 

Other features of TopBraid Composer™ include the visualization of 
relationships in RDFS/OWL resources in a graphical format and the support 
for the concurrent editing of several ontologies. TopBraid Composer™ 
provides an explanation feature for OWL DL that is based on Pellet —
similar to SWOOP. 

TopBraid Composer™ represents a complex ontology development tool 
suitable for a number of tasks that go beyond the creation of OWL/RDF(S) 
files. As the other Eclipse-based implementations, TopBraid Composer™ is 
extensible by custom plugins. TopBraid Composer™ does — in contrast to 
the historically related Protégé — mainly (if not only) target professional 
users rather than a large community. 
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2.2.4 IODT 

The Integrated Ontology Development Toolkit (IODT) was developed by 
IBM. This toolkit includes the Ontology Definition Metamodel (EODM), 
EODM workbench, and an OWL Ontology Repository (named Minerva). 
EODM is derived from the OMG’s Ontology Definition Metamodel (ODM) 
and implemented in Eclipse Modelling Framework (EMF). In order to 
facilitate software development and execution, EODM includes RDFS/OWL 
parsing and serialization, reasoning, and transformation between 
RDFS/OWL and EMF-based formats. These functions can be invoked from 
the EODM Workbench or Minerva.  

Minerva is an OWL ontology storage, inference, and query system based 
on RDBMS (Relational Database Management Systems). It supports DLP 
(Description Logic Program), a subset of OWL DL.  

 

Figure 3-4. EODM Workbench 

The EODM Workbench (see a screenshot in the following figure) is an 
Eclipse-based editor for users to create, view and generate OWL ontologies. 
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It has UML-like graphic notions to represent OWL class, restriction and 
property etc. EODM Workbench built by using EODM, EMF, Graphic 
Editing Framework (GEF), which provides the foundation for the graphic 
view of OWL. It also provides two hierarchical views for both OWL 
class/restriction and OWL object/datatype property.  

As an Eclipse-based Tool the EODM workbench benefits from all 
advantages of the Eclipse platform (coupling with other plugins, etc.). In 
addition to traditional tree-based ontology visualization, EODM workbench 
provides UML-like graphic notion. Class, DatatypeProperty and 
ObjectProperty in OWL share the similar notion as Class, Attribute and 
Association in UML. Detailed properties of OWL constructs are shown in 
the Property view. 

The EODM workbench supports multiple views for ontologies, enabling 
users to visually split large models. These views are independent from each 
other but synchronized automatically. 

Being based on Eclipse, EODB is extensible, similar to products like 
TopBraid Composer™ and OntoStudio®. It does however not offer the 
direct interaction with an underlying reasoner in the form that the latter tools 
to and therefore lacks comfortable consistency checks or testing features.  

EODM is deployed and installed as a set of Eclipse plugins. It therefore 
does not offer the easy-to-use installation routines of the other environments, 
which are deployed as standalone tools.  

Offering an EMF-based implementation of an OWL and an RDF(S) 
metamodel, EODM offers interesting opportunities for developers, such as 
the combination with other EMF-based technologies or the extension of the 
metamodel itself. 

2.2.5 SWOOP 

SWOOP (Kalyanpur et al., 2005) is an open-source hypermedia-based 
OWL ontology editor. The user interface design of SWOOP follows a 
browser paradigm, including the typical navigation features like history 
buttons. Offering an environment with a look and feel known from Web 
browsers, the developers of swoop aimed at a concept that average users are 
expected to accept within short time. Thus users are enabled to view and edit 
OWL-ontologies in a “Web-like” manner, which concerns the navigation via 
hyperlinks but also annotation features. SWOOP therefore provides an 
alternative to Web-based ontology tools but offers additional features such 
as a plugin-mechanism. 

SWOOP is designed as a native OWL-editor, which supports multiple 
OWL ontologies and consistency checking based on the capabilities of 
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attached reasoners. Following the Web browser-approach, it reflects the 
characteristics of OWL being a language for the Semantic Web. 

All ontology editing in SWOOP is done inline. Based on its HTML 
renderer, SWOOP uses different colour codes and font styles to emphasize 
ontology changes. Undo/redo options are provided with an ontology change 
log and a rollback option. 

Some of the core features of SWOOP are the debugging features for 
OWL ontologies, exploiting features of OWL reasoners (in this case Pellet). 
This includes for example the automatic generation of explanations for a set 
of unsatisfiable axioms (e.g. for a particular class).  

 

Figure 3-5. SWOOP 

SWOOP can be characterized as a “pure” OWL tool, focusing on core 
features of the language rather then on general ontology development tasks. 
The tool has to offer additional features such as a basic version control, it 
does not include a couple of typical functionalities going beyond OWL 
editing, such as the integration or import of external (non-OWL/RDF-) 
sources.  



72 Chapter 3 
 
2.2.6 OntoStudio® 

OntoStudio® is a commercial product of ontoprise. It is a the front-end 
counterpart to OntoBroker®, a fast datalog based F-Logic inference 
machine. Consequently a focus of the OntoStudio® development has been 
on the support of various tasks around the application of rules. This includes 
the direct creation of rules (via a graphical rule editor) but also the 
application of rules for the dynamic integration of datasources (using a 
database schema import and a mapping tool). 

 

Figure 3-6. OntoStudio® (with Mapping-View) 

OntoStudio® is available with a main memory- or database-based model, 
is therefore scaleable and is thus suitable for modelling even large 
ontologies. Based on Eclipse OntoStudio® provides an open framework for 
plugin developers. It already provides a number of plugins such as a query 
plugin, a visualizer and a reporting plugin supporting the Business 
Intelligence Reporting Tool (BIRT).  
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Just like TopBraid Composer™, OntoStudio® is implemented as IDE-
application using the Eclipse platform with all the advantages such as the 
plugin concept. 

OntoStudio® is tightly coupled to F-Logic (resp. its proprietary XML 
serialization OXML); the import and export from/to OWL/RDF is restricted 
mainly to concepts which can be expressed in F-Logic. Despite some minor 
syntactical details the Ontoprise F-Logic dialect conforms semantically to 
the F-Logic definition (Kifer, M. et al., 1995). Ontoprise is in close contact 
with the F-Logic forum to work on future versions of F-Logic and further 
standardization efforts. 

OntoStudio® offers a graphical and a textual rule editor as well as 
debugging features as well as a form-based query-editor. It also includes a 
graphical editor for the creation and management of ontology mappings 
including conditional mappings, filters and transformations. Thus 
OntoStudio® takes advantage of the capabilities of F-Logic regarding rules 
(such as the support for function symbols). 

2.3 Summary and remarks  

In Table 3-1 we compare the described development tools by some 
important characteristics: 

• Views: what type of representation is used to visualize the ontology 
elements; 

• Basic infrastructure: what is the basic realisation infrastructure; 
• Supported reasoner(s); 
• Repository: which underlying repository is used? 

Table 3-2 shows the important characteristics of the described reasoners: 

• Interfaces: what are the client interfaces to access the reasoners 
• Reasoning approach: what is the characteristic algorithm for the 

reasoning 
• Supported Logic: which ontology language is supported. 

The comparison shows that in many aspects the realisation of the 
reaoners is converging at least to only a few different approaches. For the 
interfaces the DIG interface is almost accepted as a service interface. For the 
Java client APIs the OWL API is very popular. For the reasoning approach 
the tableaux algorithm is very common. But several other realisations show 
that it is not sufficient especially for reasoning on large amount of instances. 
Most reasoners support OWL/DL or a subset of an equivalent description 
logic. However the support of rules either as DL safe rules or as F-Logic 
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indicates that pure OWL functionality is not sufficient for semantic 
applications. 

Table 3-1. Comparison Ontology development tools 

 
Protégé 
OWL 

Semantic 
Works 

TopBraid 
Composer™ IODT SWOOP OntoStudio® 

Primary 
Ontology 
Language11 

OWL  OWL OWL  OWL OWL  F-Logic 

View Form 
Text 

Form 
Text 
Graph 

Form 
Text 
(UML-like) 
Graph 

(UML-
like) 
Graph 

Browser-
like 

Forms 

Platform Java .NET Eclipse Eclipse Browser 
+ 
Java 

Eclipse 

Supported 
Reasoner 

Via DIG None Pellet, 
(built-in) 
Via DIG 

RACER, 
Pellet 

Pellet OntoBroker 

Repository Files, 
RDBMS 

Files Files, 
RDBMS 

RDF on 
RDBMS 

Files Files, RDBMS 

Table 3-2. Capabilities/Characteristics of Reasoners 
 Cerebra FACT++ KAON2 Pellet Racer Ontobroker OWLIM 
Interfaces OWL 

API 
DIG KAON2 

API 
DIG 
OWL 
API, 
Jena API 

DIG, 
OWL 
API 

KAON2 
API 

Sesame 
API 

Reasoning 
Approach 

Tableaux Tableaux Resolution Tableaux Tableaux Datalog Forward 
Chaining 

Supported 
Logic 

OWL/DL SHOIQ SHIQ 
+ 
DL safe 
rules 

SROIQ 
+ 
DL safe 
Rules 

SHIQ F-Logic OWL 
DLP 

Based on C++ C++ Java Java Lisp Java Java 

As mentioned in the introduction of this section, the tools focus on 
editing capabilities for OWL and RDF(S). They partially provide rich 
functionalities based on different editing paradigms, i.e. form-based editors 
or graph-based editors. In most cases those different editing features are not 
offered in parallel. The main exception is the TopBraid Composer®, which 
provides textual, graph-based and form-based editors and thus partially 
supports users with different levels of expertise or different profiles. In 
Protégé a number of wizards and two different class views ensure a certain 
degree of flexibility regarding the means of ontology creation and 

                                                      
11 Most tools support additional languages via import/export. 
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management. However, the flexibility of the tools regarding the support for 
users with a different background is still limited. 

As the popularity of semantic technologies increases and a wide range of 
ontology-based applications emerge the need for flexible and customizable 
environments will increase. A graph-based editor might not be the first 
choice for ontology experts but appropriate for domain experts with less in-
depth knowledge. Tools building on extensible platforms like Eclipse 
(TopBraid Composer®, IODT, OntoStudio®) have clear advantages 
regarding their extension and customization as well as the reuse/integration 
of existing extensions. 

The tools have a clear focus on ontology development in single-user 
environments. Only rarely more advanced features like the support of 
lifecycle aspects (e.g. in form of version management) or multi-user 
capabilities are available: e.g. Protégé offers a plugin for version 
management and TopBraid Composer® provides a multi-user mode. The 
latter is realized through an interface to the Sesame RDF repository. A 
tighter coupling of editor environments with backend technologies such as 
reasoners and repositories is a first step of going from single-user editors 
towards multi-user ontology engineering and management environments. 
The evolution of flexible environments will require modular approaches with 
efficient interfaces rather than monolithic editors. The tools currently 
available represent the first important steps in this direction. 

With the exception of Protégé there is no really hybrid tool supporting 
different language paradigms — despite the fact that most tools support 
OWL and RDF(S) to a certain degree. With the exception of OntoStudio®, 
the rule support of the ontology engineering environments currently 
available is rather limited. OntoStudio® on the other hand does not (yet) 
offer sufficient OWL (DL) support. 

However, a number of industrial applications and the activities around 
the standardization of rule languages show that the DL paradigm is 
comprehensive too but does not replace rule-based approaches. Large-scale 
rule-based applications on the other hand require full rule support, starting 
with a well-defined base in form of a rule-language. Other important features 
are rule-editing, visualization, debugging, profiling and explanation 
capabilities. At the same time there is need to support the current semantic 
Web standards including the core features of the languages. 
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3. REQUIREMENTS FOR ONTOLOGY 

MANAGEMENT INFRASTRUCTURES 

The analysis shows that the current ontology management tools focus 
mainly on the development of single ontologies by single users. In order to 
use ontology management in commercial applications this approach has to 
be widened largely. Together with other important deficits found in our 
analysis we derive the following critical requirements. 

3.1 Support for important ontology language paradigms 

An important question for an ontology management tool is the kind of 
ontology language which is supported by the tool. The OWL ontology 
language is now well established as the standard ontology language for 
representing knowledge on the Web. At the same time, rule languages, such 
as F-Logic, have shown their practical applicability in industrial 
environments. Often, ontology-based applications require features from both 
paradigms — the description logics and the rule paradigm — but their 
combination remains difficult. This is not only due to the semantic 
impedance mismatch, but already because of the disjoint landscape in 
ontology engineering tools that typically support either the one or the other 
paradigm. An ideal ontology management environment will provide support 
for ontology languages satisfying a variety of needs. The role of OWL and 
Rules as ontology languages in the Semantic Web Stack is shown in Figure 
3-7. It illustrates their parallel existence. A common subset like the DLP part 
of OWL is not powerful enough. The superset of a logic framework is still 
subject to research and cannot be efficiently handled. Therefore OWL and 
Rules have to be supported in parallel. 

3.2 Support for networked ontologies 

Next generation semantic applications will be characterized by a large 
number of networked ontologies, some of them constantly evolving, most of 
them being locally, but not globally consistent. In such scenarios it will 
become prohibitively expensive to adopt current ontology building models, 
where the expectation is to produce a single, globally consistent ontology 
which serves the application needs of developers and fully integrates a 
number of pre-existing ontologies. 
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Figure 3-7 W3C Semantic Web Stack 

To address distributed and networked ontology management, current 
ontology languages lack a number of features to explicitly express the 
relationships between ontologies and their elements. These features include 
in particular formalisms for expressing modular ontologies and mappings. 
Modular ontologies adopt the established notion of modules in order to 
separate ontologies into several parts, which can be developed and managed 
independently. Mappings (also called alignments) between ontologies allow 
defining relationships between concepts of different ontologies, without 
changing the ontologies themselves. 

3.3 Lifecycle support 

Lifecycle support is quite well established for traditional software 
artefacts like procedural programs or database schema. It means to govern 
the complete existence of a software artefact from its creation during 
software design and development via deployment, production, maintenance 
until deprecation and undeployment.  

Whereas the initial development of single, static ontologies is well 
supported, ontology evolution has been, up to now, a rather poorly 
understood and supported aspect of the ontology lifecycle, especially in 
distributed environments involving large numbers of networked ontologies. 
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Therefore, we require means for supporting the application-driven 
evolution of ontologies and metadata while guaranteeing the “local 
consistency” of networked ontologies, when, for example, one of the 
involved ontologies undergoes a change.  

While typically today’s environments are ‘closed,’ and focus on a single 
or a few individual aspects/phases of the lifecycle, we require an 
environment that adequately supports the developer user loop over the 
lifecycle of networked ontologies.  

Finally, we need to address not only the whole lifecycle of ontology 
developments but also the lifecycle of complex semantic applications. 
However it is important to emphasize that we are not concerned here with 
the “single ontology lifecycle,” but the overall lifecycle of semantic models 
which may embed several networked sub-components, each of which may 
have its own evolutionary process. For a new generation of large-scale 
semantic applications, we will need to provide lifecycle support by 
developing appropriate tool support and a reference architecture, which will 
enable interoperability between distributed lifecycle support components. 
This requires ontology support in a general purpose registry, which keeps 
track of the state and other meta-information on all components of such 
semantic applications. 

3.4 Collaboration support 

Large ontologies are built by teams, often distributed across time and 
space. Ontology development environments will need to support 
collaborative development and, in parallel, provide mechanisms for 
detecting and reasoning about the provenance of ontological structures, in 
order to generate ‘local,’ consistent views for a single user or a particular 
(possibly multi-lingual) group or community. 

Collaboration for networked ontologies consists of a set of methods, 
techniques, and tools to assist the users in distributed production of one 
particular type of formal content, namely ontologies. In addition to the initial 
production, the collaborative aspects that need a set of supportive methods 
and tools also emerge for the distributed management, maintenance and re-
use of such ontologies. 

Additionally, a collaborative framework also requires further 
infrastructure: the distributed repository of networked ontologies and a set of 
distributing components working as a middleware between the development 
environment itself and the distributed repository. 
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4. NEON REFERENCE ARCHITECTURE 

In this section we present an overview on the NeOn architecture, which is 
targeted to become the reference architecture for ontology management in 
large-scale semantic applications. The NeOn reference architecture 
integrates functionalities common to today’s ontology management tools and 
advances the state-of-the-art by addressing the discussed requirements that 
must be met in order to support the lifecycle of ontologies in networked, 
distributed, and collaborative environments. 

Figure 3-8 NeOn architecture 

The general architecture of NeOn is structured into three layers (see 
Figure 3-8. The layering is done according to increasing abstraction together 
with the data- and process flow between the components. This results in the 
following layers: 

• Infrastructure services: this layer contains the basic services required by 
most ontology applications. 

• Engineering components: this middle layer contains the main ontology 
engineering functionality realized on the infrastructure services. They 
are differentiated between tightly coupled components and loosely 
coupled services. Additionally interfaces for core engineering 
components are defined, but it is also possible to realize engineering 
components with new specific ontology functionality. 
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• GUI components: user front-ends are possible for the engineering 

components but also directly for infrastructure services. There are also a 
predefined set of core GUI components. 

4.1 Eclipse as an integration platform  

The NeOn architecture relies on the architectural concepts of the Eclipse 
platform. The Eclipse IDE (integrated development environment) provides 
both GUI level components as well as a plugin framework for providing 
extensions to the base platform. 

The Eclipse platform itself is highly modular. Very basic aspects are 
covered by the platform itself, such as the management of modularized 
applications (plugins), a workbench model and the base for graphical 
components. The real power in the Eclipse platform lies however in the very 
flexible plugin concept. 

Plugins are not limited to certain aspects of the IDE but cover many 
different kinds of functionalities. For example the very popular Java-
development support is not provided by the Eclipse platform but by a set of 
plugins. Even functionalities users would consider to be basic (such as the 
abstraction and management of resources like files or a help system) are 
realized through plugins. This stresses the modular character of Eclipse, 
which follows the philosophy that “everything is a plugin.” 

Figure 3-9 Plugin concept of Eclipse 

A plugin itself can be extended by other plugins in an organized manner. 
As shown in Figure 3-9, plugins define extension points that specify the 
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functionality which can be implemented to extend the plugin in a certain 
way. An extending plugin implements a predefined interface and registers 
itself via a simple XML file. In the XML file the kind of extension as well as 
additional properties (such as menu entries) are declared. 

4.2 Infrastructure services 

The infrastructure services cover support for the underlying ontology 
model via the Ontology Model API, as well as reasoning, repository and 
registry functionality. 

4.2.1 Ontology model API 

The NeOn ontology model API is the core ontology interface of the 
NeOn infrastructure. It is the main access point for the basic ontology-
related operations such as reading, creating and manipulating models. The 
API is meant as a representation of the underlying languages encapsulating 
the details of interpretation, persistence, etc. The base of this API is the 
KAON2 API. The main feature of the API is its native support for both 
OWL and F-Logic as ontology languages. 

The integration of OWL and F-Logic in the API is achieved via a 
common grounding in a First-Order-Logic (FOL) layer. The APIs for OWL 
and F-Logic are realized as extensions of the elements of the FOL API, for 
example the interface of OWLClass extends the interface of a FOL 
Predicate. While the API is a hybrid API supporting two languages it does 
not and is not meant to resolve the conceptual mismatch between different 
formal semantics of the languages. It is the base for hybrid applications and 
allows harmonizing infrastructure components (such as storage, reasoning 
components, etc.).  

4.2.2 Reasoner 

NeOn reasoners are a core component of the architecture on the 
infrastructure level. Accessing the reasoners is performed via a reasoner API 
that tightly integrates with the ontology model API described above. The 
API supports the management of ontologies as well as reasoning on 
ontologies. It thus supports engineering environments as well as runtime 
servers. 

While in the reference architecture we foresee that both OWL and rule 
languages are supported for reasoning, actual implementations may also 
support either one of the ontology languages. In the first implementation of 
the NeOn reference architecture, we will provide reasoning support for OWL 
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with the KAON2 reasoner and for F-Logic with the Ontobroker reasoner, 
both of which already support the NeOn ontology model and reasoning API. 

4.2.3 Repository 

The term repository subsumes often a wide variety of functionality. For 
the NeOn development architecture the functionality of a development 
repository for ontologies is essential. Another important aspect is the 
suitability of the repository for reasoning. This has been already discussed in 
the state of the art chapter for existing reasoners.  

There are use cases where simple repository functionality is sufficient. 
However a realistic complete lifecycle support must handle large scale 
ontologies. Thus a more sophisticated repository functionality is needed. 
Reasoning on large ontologies additionally requires specific repository 
functionality for fast access to selected parts of many ontologies. 

The repository manages ontologies identified by a unique name given as 
an URI in a persistent store. They are organized in a hierarchical, directory-
like structure of collections. The functionality is based on the WebDAV 
protocol (Clemm et al., 2002). 

The ontology repository manages directly all the artefacts needed for an 
ontology-based application including ontologies and other data like XML, 
text and binary data. For these artefacts the following basic operations are 
available: direct access via an URL, navigation on hierarchical collections 
and manipulation operations. 

Another repository functionality is versioning. We provide basic 
versioning support for ontologies, which will be extended by more advanced 
collaboration facilities in specific engineering components. The basic 
versioning support is realized via WebDAV versioning, which is offered via 
the subversion protocol. The granularity is an ontology document. It includes 
check in and checkout facilities. 

As ontologies are used to model all kind of data it is in many cases 
critical that the access to the ontologies can be controlled completely. This is 
especially true in open environments like the Semantic Web. 

As the repository functionality is based on the WebDAV functionality the 
use of the powerful access control protocol (Clemm et al., 2004) is a 
consequent choice. It defines a powerful access protocol where the actors are 
user and groups. They can have privileges defined for all operations on any 
resource. These access control elements are grouped to access control list for 
each resource. 

Multi-user capabilities are part of the versioning support. Transactions 
are not available at the interface level as the versioning support offers 
sufficient mechanisms for isolating the changes of concurrent users. The 
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repository operations are atomic in the sense that their effect is either 
completely visible or not all. This is typically realised by transactions of 
DBMS. Nevertheless a simple file based realisation is also possible, which 
has not that guarantee. 

4.2.4 Registry 

With the increasing number of ontologies and their increased 
fragmentation into networked ontologies the need for an ontology registry is 
evident. This is not only true for the Semantic Web environment but also for 
large scale semantic applications in an enterprise environment.  

The functionality of an ontology registry is based on an ontology meta 
model. For NeOn it will be based on the OMV ontology meta model (Palma 
et al., 2006). The ontology registry allows to register and query information 
about ontologies according to OMV. As this includes the location of an 
ontology in form of a directly accessible URL the ontology registry directly 
supports the management of networked ontologies.  

Besides this functionality for certain scenarios other critical 
characteristics are needed.  

• Integration with repository: For complete governance in enterprise 
environments the registry has to be integrated with the repository. 

• Integration with general purpose registry: Opposite to specialized 
ontology registry it is necessary for many real world usages of 
ontologies that the same registry can handle also other artefacts of the 
complete applications. Therefore the integration of the ontology 
repository functionality into a general purpose registry is needed. 

• Federation: Several registries can act as a federated registry. This means 
mechanisms to synchronize the content of the federated registries. 
Another functionality are federated registry queries. They will be 
distributed to all registries of the federation. The results are sent back to 
the registry initiating the federation. 

4.3 Engineering components 

The engineering components are the main source of functionalities that 
end-users typically make use of. An engineering component consists of one 
or more plugins. The basic engineering operations (managing elements of 
the ontology language) are supported through a core plugin. 

Concerning the coupling of plugins to the toolkit we distinguish between 
two main categories: tightly and loosely coupled components. 

The characteristics of tightly coupled components are 



84 Chapter 3 
 
• Highly interactive behaviour 
• Fine grained size 
• Locally used components 
• Repository access 

Tightly coupled components are realized as conventional Eclipse plugins. 
Examples are Mapping editors or Ontology browsers, i.e. plugins with a rich 
graphical interface where frequent user actions invoke process on the 
infrastructure layer. A tightly coupled component directly interacts with the 
infrastructure layer without any transport layer in between. 

The characteristics of loosely coupled components are 

• Non interactive behaviour 
• Large grain size 
• Remotely used components 
• own repositories 

Thus the loose coupling allows using functionality, which was 
independently developed or cannot be easily deployed into the toolkit 
environment. Examples are specialized reasoning services or ontology 
annotation tools for text, which require a specialized infrastructure. 

In the NeOn architecture the loosely coupled components are integrated 
as Web services. This requires the realisation of a usually thin Web service 
layer on top of the component. If not already available the Web service layer 
should be realized in the hosting environment of the component in order to 
avoid too many protocol indirections. 

4.4 GUI components 

The separation between GUI components and engineering components 
is — to a certain degree — arbitrary. A GUI component can be a separate 
Eclipse-plugin that is the counterpart to another plugin containing the 
engineering component or it can be one plugin together with its engineering 
component. The latter is suitable if only one GUI component is expected for 
the engineering component and both are strongly connected. 

Basic GUI components will be part of a minimal configuration of the 
toolkit. This includes typical property editors for the management of 
language elements like classes and properties.  

Additional GUI components include editors built on Eclipse frameworks 
such as the text-editor framework, the Eclipse Modeling Framework (EMF) 
and the Graphical Modeling Framework (GMF). The latter allows a 
declarative, model-driven approach for the creation of graph-based editors 
like UML tools. This requires a data model representing the supported 
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language(s) or language subsets which is in line with the underlying 
ontology model API (see also section “infrastructure services”).  

GUI components require different modes of operation on the underlying 
data model. A form-based component e.g. for properties typically allows 
incremental updates using the event-management of its sub-components. A 
textual component can usually only be synchronized block-wise, depending 
on the part of the ontology that can be edited in the editor. In the extreme 
case it’s the complete ontology.  

5. CONCLUSIONS 

In this chapter we have explored infrastructures for ontology 
management. We have analyzed state-of-the-art systems for ontology 
management. From their deficits we derived critical requirements that must 
be met in order to support the lifecycle of ontologies in networked, 
distributed, and collaborative environments. 

To support the development of next generation semantics-based 
applications, we have presented the NeOn architecture — a reference 
architecture for ontology management. The NeOn architecture is designed in 
an open and modular way and includes infrastructure services such as a 
registry and a repository and supports distributed components for ontology 
development, reasoning and collaboration in networked environments. 

The NeOn toolkit as the reference implementation of the NeOn 
architecture is intended as the next generation ontology engineering 
environment and platform for semantic applications. In contrast to 
“traditional” ontology editors or engineering environments, the NeOn toolkit 
is based on a hybrid ontology model, as it natively supports the two major 
ontology modelling paradigms: OWL for DL-based ontologies and F-Logic 
for Rules and Frame based representations. It is based on the Eclipse 
infrastructure and heavily uses its mechanisms e.g. for extensibility and meta 
modelling. 

It is currently under development and results on planned experiments 
with it usage will certainly refine also the reference architecture. 

ADDITIONAL READING 

To read about challenges that exist related to applying ontologies in real-
world environments, we recommend (Maedche et al., 2003). The authors 
present an integrated enterprise-knowledge management architecture, 
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focusing on how to support multiple ontologies and manage ontology 
evolution. 

In (Gómez-Pérez et al., 2004) the authors have analyzed methodologies, 
tools and languages for building ontologies and argued that the future work 
in this field should be driven towards the creation of a common integrated 
workbench for ontology developers to facilitate ontology development, 
exchange, evaluation, evolution and management. The NeOn toolkit can be 
seen as a realization of this vision. 

Another comparison and evaluation of ontology engineering 
environments can be found in (Mizoguchi, 2004). 
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Abstract: Reasoning with large amounts of data together with ontological knowledge is 
becoming a pertinent issue. In this chapter, we will give an overviewof well-
known ontology repositories, including native stores and database based 
stores, and highlight strengths and limitations of each store. We take Minerva 
as an example to analyze ontology storage in databases in depth, as well as to 
discuss efficient indexes for scaling up ontology repositories. We then discuss 
a scalable reasoning method for handling expressive ontologies, as well as 
summarize other similar approaches. We will subsequently delve into the 
details of one particular ontology language based on Description Logics called 
WSML-DL and show that reasoning with this language can be done by a 
transformation from WSML-DL to OWL DL and support all main DL-specific 
reasoning tasks. Finally, we illustrate reasoning and its relevance by showing a 
reasoning example in a practical business context by presenting the Semantic 
Business Process Repository (SBPR) for systemical management of semantic 
business process models. As part of this, we analyze the main requirements on 
a such a repository. We then compare different approaches for storage 
mechanisms for this purpose and show how a RDBMS in combination with 
the IRIS inference engine provides a suitable solution that deals well with the 
expressiveness of the query language and the required reasoning capabilities 
even for large amounts of instance data.  

Keywords: business repository; IRIS; OWL DL; reasoning with large datasets; Semantic 
Business Process Management; WSML DL 
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1. INTRODUCTION 

Reasoning with large amounts of data together with ontological 
knowledge is becoming an increasingly pertinent issue. Especially in the 
case of Semantic Web applications, an important question is how to store 
respective ontologies and how to reason with them, without losing out of 
sight the need for scalability. In the end, the Semantic Web is envisaged to 
contain a huge amount of data, and reasoning with ontologies for 
maintaining semantical information requires scalable reasoners to extract the 
relevant information from these ontologies. 

In order to give the reader an overview of existing solutions regarding the 
storage of ontologies, we will start this chapter by giving an overview of 
existing ontology stores. Furthermore, we will explore the use of relational 
databases extensively as an efficient means for storing ontologies. 

After discussing how OWL — currently the most prominent ontology 
language on the Semantic Web — ontologies can be stored, we will 
investigate a particular language, WSML-DL and see how it can be 
translated to OWL-DL, thus giving the reader also insight in WSML-DL 
reasoning by relating it to the storing capabilities described for OWL in this 
chapter. 

The first part of this chapter focuses on languages based on Description 
Logic, like OWL and WSML-DL. In the final part, we will discuss a Logic 
Programming approach, based on WSML-Flight, and see how reasoning 
with ontologies can be done in that context. 

An important use case for scalable ontology repositories is given by the 
area of Business Process Management. The globalization of the economy 
and the ongoing change of the market situation challenge corporations to 
adapt their business processes in an agile manner to satisfy the emerging 
requirements on the market and stay. Business Process Management (BPM) 
is the approach to manage the execution of IT-supported business processes 
from a business expert’s point of view rather than from a technical 
perspective (Smith et al. 2003). However, currently businesses have still 
very incomplete knowledge of and very incomplete and delayed control over 
their process spaces. Semantic Business Process Management (SBPM) 
extends the BPM approach by adopting Semantic Web and Semantic Web 
Service technologies to bridge the gap between business and IT worlds 
(Hepp et al., 2005).  

In both BPM and SBPM, representations of business processes play a 
central role. As business processes manifest the business knowledge and 
logics of a corporation and normally more than one person or organization 
with different expertise and in different geographic locations are involved in 
management of business processes, it is advantageous to establish a business 
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process repository (BPR) within a corporation for effective sharing of 
valuable business process knowledge. Furthermore, business users tend to 
reuse existing business process artifacts during process modeling, so that 
they are able to adapt the business processes in a more agile manner. 
However, as the number of business processes increases, it is difficult for 
them to manage the process models by themselves and to find the required 
business process information effectively. A BPR helps business users by 
providing a systematic way to manage and obtain information on business 
processes.  

In SBPM, business process models are based on process ontologies and 
make use of other ontologies, such as organizational ontologies or a 
Semantic Web Service ontology (Hepp et al. 2007). The BPR has to be able 
to cope with these ontological descriptions when storing and retrieving 
process models, and in particular support efficient querying and reasoning 
capabilities based on the ontology formalism used. In order to distinguish 
from traditional BPR technology, we call this kind of repository a Semantic 
Business Process Repository (SBPR). 

We first analyze the functional requirements on the SBPR. We describe 
what kind of functionality the SBPR should offer to its clients, which is 
primarily a process modeling tool. We then compare different approaches for 
data storage and querying based on the ontological descriptions. The 
comparison is based on the expressiveness of the query language, the 
scalability of the query processing and the effort for the integration of the 
query processing with the underlying data storage. We then finally describe 
the overall architecture of the SBPR. 

2. ONTOLOGY STORAGE AND REASONING:  
AN OVERVIEW 

2.1 Ontology repositories 

In the past decade, we have seen the development of numerous ontology 
repositories for use in Semantic Web applications. In this section, we 
classify some well-known repositories based on their storage schemes, 
summarize methods to store ontologies in relational databases, and introduce 
reasoning methods used by these repositories briefly. 

From the representational perspective, an ontology is in essence a 
directed, labeled graph, which makes ontology storage highly challenging. 
Figure 4-1 shows a classification scheme for ontology repositories based on  
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Ontology Repositories

Native Stores Database based Stores

Triple File based Stores Hierarchy Stores

Generic RDF Stores Improved Triple Stores

Binary Table based Stores
 

Figure 4-1. A taxonomy to classify ontology repositories 

their storage models. In general, ontology repositories can be divided into 
two major categories, which are native stores and database-based stores. 
Native stores are directly built on top of the file system, whereas database-
based repositories use relational or object-relational databases as the 
underlying backend store; that is, they can build on top of the storage and 
retrieval mechanisms and optimizations of those databases. Popular native 
stores include OWLIM (Kiryakov at al., 2005), HStar (Chen et al., 2006), 
and AllegroGraph (AllegroGraph, 2006). OWLIM and AllegroGraph adopt 
simple triple (N-triple) files to store all data, which results in the extremely 
fast speed for load and update. It is reported that AllegroGraph can load 
RDF data at the speed of more than 10,000 triples per second. OWLIM uses 
B+ trees to index triples and AllegroGraph just sorts triples in the order of 
(S, P, O), (P, O, S), and (O, S, P), respectively, for indexing purposes. The 
triple reasoning and rule entailment engine (TRREE) is utilized by OWLIM, 
which performs forward chaining reasoning in main memory, and inferred 
results are materialized for query answering. AllegroGraph can expose RDF 
data to Racer, a highly optimized DL reasoner (Haarslev & Moller, 2001), 
for inference. HStar is a hierarchy store and organizes typeOf triples (namely 
concept assertions in description logics terminology) using a class hierarchy 
and other non-typeOf triples (namely role assertions) using a property 
hierarchy. Because of its hierarchical tree models, it can leverage XML 
techniques to support a scalable store. Range labeling, which assigns labels 
to all nodes of an XML tree such that the labels encode all ancestor-
descendant relationships between the nodes (Wu et al., 2004), can also 
largely improve query performance. Also, HStar uses B+ trees to index 
triples. A set of rules derived from OWL-lite is categorized into two groups, 
which are executed at load time using forward chaining and are evaluated at 
query time using backward chaining, respectively. In particular, reasoning 
on SubClassOf or SubPropertyOf could be easily implemented via its 
hierarchical trees. 
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Compared with database-based stores, native stores, in general, greatly 
reduce the load and update time. However, database systems provide many 
query optimization features, thereby contributing positively to query 
response time. It is reported in (Ma et al., 2006) that a simple exchange of 
the order of triples in a query may increase the query response time of native 
stores by 10 times or even more. Furthermore, native stores need to re-
implement the functionality of a relational database such as transaction 
processing, query optimization, access control, logging and recovery. One 
potential advantage of database-based stores is that they allow users and 
applications to access both (1) ontologies and (2) other enterprise data in a 
more seamless way at the lower level, namely the level of the database. For 
instance, the Oracle RDF store translates an RDF query into a SQL query 
which can be embedded into another SQL query retrieving non-RDF data. In 
this way, query performance can be improved by efficiently joining RDF 
data and other data using well-optimized database query engines. Currently, 
lots of research efforts are made on database-based stores. We thus focus on 
ontology storage and reasoning in databases in the following, while 
comparing it with native stores. 

A generic RDF store mainly uses a relational table of three columns 
(Subject, Property, Object) to store all triples, in addition to symbol tables 
for encoding URIs and literals with internal, unique IDs. Both Jena and the 
Oracle RDF store are generic RDF stores. In Jena2 (Wilkinson et al., 2003), 
most of URIs and literal values are stored as strings directly in the triple 
table. Only the URIs and literals longer than a configurable threshold are 
stored in separated tables and referenced by IDs in the triple table. Such a 
design trades storage space for time. The property table is also proposed to 
store patterns of RDF statements in Jena2. An n-column property table stores 
n–1 statements (one column per property). This is efficient in terms of 
storage and access, but less flexible for ontology changes. Jena2 provides by 
default several rule sets with different inference capability. These rule sets 
could be implemented in memory by forward chaining, backward chaining 
or a hybrid of forward and backward chaining. The Oracle RDF store 
(Murray et al., 2005) is the first commercial system for RDF data 
management on top of RDBMS. Particularly, it supports so-called rulebases 
and rule indexes. A rulebase is an object that contains rules which can be 
applied to draw inferences from RDF data. Two built-in rulebases are 
provided, namely RDFS and RDF (a subset of RDFS). A rule index is an 
object containing pre-calculated triples that can be inferred from applying a 
specified set of rulebases to RDF data. Materializing inferred results would 
definitely speed up retrieval. Different from the generic RDF store, 
improved triple stores, such as Minerva (Zhou et al., 2006) and Sesame on 
top of the MySQL database (Broekstra et al., 2002), manage different types 
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of triples using different tables. As we can see from the storage schema of 
Minerva shown in Figure 4-3, class and property information is separated 
from instances, and typeOf triples are isolated from other triples. The 
improved triple store is efficient since some self-joins on a big triple table 
are changed to some joins among small-sized tables. Both the generic RDF 
store and the improved triple store make use of a fixed database schema. 
That is, the schema is independent of the ontologies in use. The schema of 
binary table based stores, however, changes with ontologies. These kinds of 
stores, such as DLDB-OWL (Pan & Heflin, 2003) and Sesame on 
PostgreSQL (Broekstra et al., 2002), create a table for each class (resp. each 
property) in an ontology. A class table stores all instances belonging to the 
same class and a property table stores all triples which have the same 
property. Such tables are called binary tables. For the subsumption of classes 
and properties, DLDB-OWL exploits database views to capture them, 
whereas Sesame leverages the sub-tables from object relational databases so 
as to handle them naturally. One of advantages of the binary table based 
store is to decrease the traversal space and improve data access for queries. 
That is, instances of unrelated classes or properties to a query will not be 
accessed. An obvious drawback is the alteration of the schema (e.g., deleting 
or creating tables) when ontologies change. Also, this binary table based 
approach is not suitable for very huge ontologies having tens of thousands of 
classes, such as SnoMed ontology (SnoMed, 2006). Too many tables will 
increase serious overhead to the underlying databases. 

The above gives an overall introduction to some well-known ontology 
repositories, including native stores and database based stores, and highlights 
strengths and limitations of each store. It is reported in (Ma et al., 2006) that 
Minerva achieves good performance in benchmarking tests. Next, we will 
take Minerva as an example to analyze ontology storage in databases in 
depth, as well as to discuss efficient indexes for scaling up ontology 
repositories. We will then discuss a scalable reasoning method for handling 
expressive ontologies, as well as summarize other similar approaches. 

2.2 Practical Methods for ontology storage and index in 
relational databases 

This section discusses methods to store and index ontologies in relational 
databases by investigating an improved triple store, namely Minerva (Zhou 
et al., 2006). Figure 4-2 shows the component diagram of Minerva, which is 
consists of four modules: Import Module, Inference Module, Storage 
Module (viz. an RDBMS schema), and Query Module. 
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Figure 4-2. The component diagram of Minerva 

The import module consists of an OWL parser and two translators. The 
parser parses OWL documents into an in-memory EODM model (EMF 
ontology definition metamodel) (IODT, 2005), and then the DB translator 
populates all ABox assertions into the backend database. The function of the 
TBox translator is two-fold: One task is to populate all asserted TBox 
axioms into a DL reasoner, and the other is to obtain inferred results from 
the DL reasoner and to insert them into the database. A DL reasoner and a 
rule inference engine comprise the inference module. Firstly, the DL 
reasoner infers complete subsumption relationships between classes and 
properties. Then, the rule engine conducts ABox inference based on the 
description logic programs (DLP) rules (Grosof et al., 2003). Currently, the 
inference rules are implemented using SQL statements. Minerva can use 
well-known Pellet (Sirin & Parsia, 2004) or a structural subsumption 
algorithm for TBox inference (IODT, 2005). The storage module is intended 
to store both original and inferred assertions by the DL reasoner and the rule 
inference engine. However, there is a way to distinguish original assertions 
from inferred assertions by a specific flag. Since inference and storage are 
considered as an inseparable component in a complete storage and query 
system for ontologies, a specific RDBMS schema is designed to effectively 
support ontology reasoning. Currently, Minerva can take IBM DB2, Derby, 
MySQL and Oracle as the back-end database. The query language supported 
by Minerva is SPARQL (Prud’hommeaux & Seaborne, 2006). SPARQL 
queries are answered by directly retrieving inferred results from the database 
using SQL statements. There is no inference during the query answering 
stage because the inference has already been done at the loading stage. Such 
processing is expected to improve the query response time. 
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In summary, Minerva combines a DL reasoner and a rule engine for 
ontology inference, followed by materializing all inferred results into a 
database. The database schema is well designed to effectively support 
inference and SPARQL queries are answered by direct retrieval from the 
database. Jena and Sesame have provided support for ontology persistence in 
relational databases. They persist OWL ontologies as a set of RDF triples 
and do not consider specific processing for complex class descriptions 
generated by class constructors (boolean combinators, various kinds of 
restrictions, etc). The highlight of Minerva’s database schema is that all 
predicates in the DLP rules have corresponding tables in the database. 
Therefore, these rules can be easily translated into sequences of relational 
algebra operations. For example, Rule Type(x,C) :- Rel(x,R, 
y).Type(y,D).SomeValuesFrom(C,R,D) has four terms in the head and body, 
resulting in three tables: RelationshipInd, TypeOf and SomeValuesFrom. It is 
straightforward to use SQL statements to execute this rule. We just need to 
use simple SQL select and join operations among these three tables. 
Leveraging well-optimized database engines for rule inference is expected to 
significantly improve the efficiency. Figure 4-3 shows the relational storage 
model of Minerva. 

 

Figure 4-3. Database schema of Minerva 

We categorize tables of the database schema of Minerva into four types: 
atomic tables, TBox axiom tables, ABox fact tables and class constructor 
tables. The atomic tables include: Ontology, PrimitiveClass, Property, 
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Datatype, Individual, Literal and Resource. These tables encode the URI 
with an integer (the ID column), which reduces the overhead caused by the 
long URI to a minimum. The hashcode column is used to speed up search on 
URIs and the ontologyID column denotes which ontology the URI comes 
from. The Property table stores characteristics (symmetric, transitive, etc.) of 
properties as well. To leverage built-in value comparison operations of 
databases, boolean, date time and numeric literals are separately represented 
using the corresponding data types provided by databases. There are three 
important kinds of ABox assertions involved in reasoning: TypeOf triples, 
object property triples and datatype property triples. They are stored in three 
different tables, namely tables TypeOf, RelationshipInd and RelationshipLit. 
A view named Relationship is constructed as an entry point to object 
property triples and datatype property triples. Triples irrelevant to reasoning, 
such as those with rdfs:comment as the property, are stored in the table 
Utility. The tables SubClassOf, SubPropertyOf, Domain, Range, 
DisjointClass, InversePropertyOf are used to keep TBox axioms. The class 
constructor tables are used to store class expressions. Minerva decomposes 
the complex class descriptions into instantiations of OWL class constructors, 
assigns a new ID to each instantiation and stores it in the corresponding class 
constructor table. Taking the axiom Mother ≡ Woman ⊓ ∃hasChild.Person 
as an example, we first define S1 for ∃hasChild.Person in Table 
SomeValuesFrom. Then I1, standing for the intersection of Woman and S1, 
will be defined in Table IntersectionClass. Finally, {Mother ⊑  I1, I1 ⊑  

Mother} will be added to the SubClassOf table. Such a design is motivated 
by making the semantics of complex class description explicit. In this way, 
all class nodes in the OWL subsumption tree are materialized in database 
tables, and rule inference can thus be easier to implement and faster to 
execute via SQL statements. Also, a view named Classes is defined to 
provide an overall view of both named and anonymous classes in OWL 
ontologies. 

The triple table of three columns (Subject, Property, Object) is also called 
a vertical table in data management. In (Agrawal et al., 2001), Agrawal et al. 
discussed the advantages of vertical tables over binary tables in terms of 
manageability and flexibility. Improved triple stores, including Minerva, 
generally adopt vertical tables to store ABox facts. The vertical table is 
efficient in space, but its retrieval often requires a 3-way join. This becomes 
a bottleneck in the case of complex queries or a large number of records 
involved, although using some indexes. Wang et al. (Wang et al., 2002) 
gives an insight into why the vertical table sometimes results in long query 
response time. Most relational databases transform a user query into a 
physical query plan which represents the operations, the method of 
performing the operations, and the order of processing the different 
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operations (Garcia-Molina et al., 2000). A query optimizer of the database 
considers multiple physical plans and estimates their costs, and then selects a 
plan with the least estimated cost and passes it to the execution engine. So, 
the accuracy of the cost estimation seriously affects the efficiency of a query 
execution. Usually statistics collected from the base data are used to estimate 
the cost of a query plan. The query optimizer builds a histogram for each 
column. The histogram contains information about the distribution of the 
corresponding column and is stored in a database catalog (Wang et al., 2002, 
Poosala et al., 1996, Matias et al., 1998). Apparently, if the statistical 
information represented by the histogram is inaccurate, the query optimizer 
may make a wrong selection among different physical query plans. Since 
values of different properties are stored in the same column of the vertical 
table, the corresponding histogram can not accurately reflect the value 
distribution of each property. This may affect the query plan selection and 
execution of a query which needs to access information in the vertical table. 
Wang et al. proposed to build external histograms for values of different 
attributes and rewrite the physical query plan based on these external 
histograms. That is, with the external histograms, the DBMS query engine 
could generate an optimal query plan. Therefore, we can adopt this 
optimization method for the performance of triple stores. Sometimes, it is 
impossible to apply this method since one needs to access the core engine of 
the database. So, it is desirable to leverage indexes as much as possible to 
improve ontology repositories. 

Currently, most commercial database systems provide primary clustering 
indexes. In this design, an index containing one or more keyparts could be 
identified as the basis for data clustering. All records are organized on the 
basis of their attribute values for these index keyparts by which the data is 
ordered on the disk. More precisely, two records are placed physically close 
to each other if the attributes defining the clustering index keyparts have 
similar values or are in the same range. Clustering indexes could be faster 
than normal indexes since they usually store the actual records within the 
index structure and the access on the ordered data needs less I/O costs. In 
practice, it is not suitable to create an index on a column with few distinct 
values because the index does not narrow the search too much. But, a 
clustering index on such a column is a good choice because similar values 
are grouped together on the data pages. Considering that real ontologies have 
a limited number of properties, the property column of triple tables, such as 
the RelationshipInd table of Minerva, could be a good candidate for 
clustering. So, it is valuable to use clustering indexes on triple tables for 
performance purpose. 

Similar to normal unclustered indexes, the clustering index typically 
contains one entry for each record as well. More recently, Multi-
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Dimensional Clustering (MDC) (Bhatt et al., 2003) is developed to support 
block indexes which is more efficient than normal clustering indexes. Unlike 
the primary clustering index, an MDC index (also called MDC table) can 
include multiple clustering dimensions. Moreover, the MDC supports a new 
physical layout which mimics a multi-dimensional cube by using a physical 
region for each unique combination of dimension attribute values. A 
physical block contains only records which have the same unique values for 
dimension attributes and could be addressed by block indexes, a higher 
granularity indexing scheme. Block indexes identify multiple records using 
one entry and are thus quite compact and efficient. Queries using block 
indexes could benefit from faster block index scan, optimized prefetching of 
blocks, as well as lower path length overheads while processing the records. 
Evaluation results from (Brunner et al., 2007) showed that the MDC indexes 
could dramatically improve query performance (20 times faster and even 
more) and the set of indexes P*, (P,O), (S,P,O) on the triple table gives the 
best result for most queries on Minerva using DB2, where P* means an 
MDC index, other two represent composites unclustered indexes. 
Additionally, the MDC index could be built on the table defining typeOf 
information, grouping the records by classes. 

Currently, the MDC index is a unique feature of DB2. But other popular 
databases provide advanced index functionalities as well. Oracle supports 
range partitioning which is a single dimension clustering of the data into 
partitions. It allows tables, indexes, and index-organized tables to be 
subdivided into smaller pieces, enabling these objects to be managed and 
accessed at a finer level of granularity. SQL Server and Teradata Non 
StopSQL support B+ tree tables. In this scheme, one can define the entire 
table as a B+ tree itself clustered on one or more columns. These features are 
helpful for the performance of triple stores. 

2.3 A scalable ontology reasoning method by 
summarization and refinement 

Reasoning algorithms that could be scaled to realistic databases are a key 
enabling technology for the use of ontologies in practice. Unfortunately, 
OWL-DL ontology reasoning using the tableau algorithm is intractable in 
the worst case. As we discussed previously, rule inference is adopted for 
OWL reasoning by some ontology repositories, and sometimes, inferred 
results are materialized for retrieval. But, rule inference cannot realize 
complete and sound reasoning of OWL-DL ontologies and maintaining the 
update of materialized results is also a non-trivial problem. Here, we 
introduce a novel method that allows for efficient querying of SHIN 
ontologies with large ABoxes stored in databases. Currently, this method 
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focuses on instance retrieval that queries all individuals of a given class in 
the ABox. This summarization and refinement based method can also be 
treated as an optimization that any tableau reasoner can employ to achieve 
scalable ABox reasoning. 

It is well known that all queries over DL ontologies can be reduced to a 
consistency check (Horrocks & Tessaris, 2002), which is usually checked by 
a tableau algorithm. As an example, an instance retrieval algorithm can be 
realized by testing if the addition of an assertion a : ¬C for a given individual 
a results in an inconsistency. If the resulting ABox is inconsistent, then a is 
an instance of C. But, it is impractical to apply such a simple approach to 
every individual. In most real ontologies, we can observe that 1) individuals 
of the same class tend to have the same assertions with other individuals and 
2) most assertions are in fact irrelevant for purposes of consistency check. 
Motivated by these observations, Fokoue et al. (Fokoue et al., 2006) 
proposed to group individuals which are instances of the same class into a 
single individual to generate a summary ABox of a small size. Then, 
consistency check can be done on the dramatically simplified summary 
ABox, instead of the original ABox. By testing an individual in the summary 
ABox, all real individuals mapped to it are effectively tested at the same 
time.  

The SHER reasoner (Dolby et al., 2007) implemented this reasoning 
approach on top of Minerva’s storage component (Zhou et al., 2006) and 
proved its effectiveness and efficiency on the UOBM benchmark ontology. 
It is reported that SHER can process ABox queries with up to 7.4 million 
assertions efficiently, whereas the state of the art reasoners could not scale to 
this size. 

2.4 Other approaches to scaling reasoning over large 
knowledge bases 

The issue of scaling reasoning over large ABoxes has recently received a 
lot of attention from the Semantic Web and Description Logics communities. 
Two main approaches have been proposed to tackle it. The first approach 
consists in building new algorithms, heuristics and systems that exhibit 
acceptable performance on realistic large and expressive knowledge bases. 
Proponents of the second approach, on the other hand, advocate reducing the 
expressiveness of TBoxes describing large ABoxes so that the worst-case 
data complexity1 of reasoning becomes tractable. The summarization and 
refinement technique to scale reasoning over large and expressive ABoxes 
                                                      
1 Data complexity refers to the complexity of reasoning over the ABox only assuming that the 

TBox is fixed.  It measures the complexity of reasoning as a function of the ABox size 
only. 
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presented in the previous section is an illustration of research work guided 
by the first approach. In this section, we present other important recent work 
on reasoning over large and expressive knowledge bases as well as 
Description Logics that have been defined with a tractable worst-case data 
complexity. 

Since state-of-the-art in-memory reasoners, such as Pellet (Sirin & 
Parsia, 2004) and Racer (Haarslev & Moller, 2001), offer good performance 
on realistic expressive but small knowledge bases, Guo et al. have recently 
proposed to decompose large and expressive ABoxes into possibly 
overlapping small components that could be separately fed to state-of-the-art 
in-memory reasoners. The decomposition is such that the answer to a 
conjunctive query over the original ABox is the union of the answers of the 
same conjunctive query over each component of the decomposition. 
Conservative analyses of the inference rules of the considered DL provide 
the understanding of interdependency between ABox assertions. Two ABox 
assertions depend on each other if they might be used together to infer new 
assertions. The decomposition is such that two assertions that depend on 
each other always appear together in a component. Results of initial 
experimental evaluation presented in (Guo & Heflin, 2006) are very 
promising. Another approach (Hustadt et al., 2004) to efficiently answer 
conjunctive queries over large and expressive knowledge bases consists in 
transforming any SHIN(D)2 knowledge base into a disjunctive Datalog 
program. The advantages of this approach are twofold. First, it leverages 
decades of research on optimizations of disjunctive datalog programs (e.g. 
magic set transformation). Second, it naturally supports DL-safe rules 
(Motik et al., 2004), which can straightforwardly be translated into datalog 
rules.  

Other researchers have advocated reducing the expressive power in order 
to obtain tractable reasoning over large ABoxes. Calvanese et al. have 
introduced a family of inexpressive Description Logics, the DL-Lite family, 
with data complexity varying from LogSpace to co-NP-hard (Calvanese et 
al., 2006). DL-Litecore, the least expressive language in the DL-Lite family, 
consists of existential restriction and a restricted form of negation 
(Calvanese et al., 2005). The language for DL-Litecore concepts and roles is 
defined as follows:  

Cl � A | ∃R; Cr �A | ∃R| ¬A | ¬∃R 
R � P | P – 

where Cl (resp. Cr) denotes a concept that may appear in the left (resp. right) 
hand side of a concept inclusion axiom in the TBox. Two simple extensions 
                                                      
2 SHIN(D) is the subset of OWL DL without nominal. 
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of DL-Litecore, DL-LiteF,6 and DL-LiteR,6 , have been defined and shown to be 
FOL-reducible: i.e. answering a conjunctive query in DL-Litecore or in one of 
these extensions can be reduced to evaluating a SQL query over the database 
corresponding to the ABox. The advantages of these FOL-reducible 
languages are straightforward for applications with very limited 
expressiveness needs. DL-LiteF,6 extends DL-Litecore by allowing 
intersections on the left hand side of concept inclusion axioms and functional 
roles; while DL-LiteR,6 extends DL-Litecore by allowing inclusion axioms 
between roles, intersections on the left hand side of concept inclusion 
axioms, and qualified existential restrictions on the right hand side of 
concept inclusion axioms. All the other extensions3 to DL-Litecore are not 
FOL-reducible, but, for the most part, they remain tractable. Other 
Description Logics with polynomial data complexity include Horn-SHIQ 
(Hustadt et al., 2005, Krotzsch et al., 2006), a fragment of SHIQ analogous 
to the Horn fragment of first-order logic, and description logic programs 
(Grosof et al., 2003). 

2.5 Bridging discrepancies between OWL ontologies and 
databases 

Recently, Semantic Web and ontologies are receiving extensive attention 
from data management research. One source of this interest is that ontologies 
can be used as semantic models which are able to represent more semantics 
of the underlying data. OWL provides numerous constructs to define 
complex and expressive models. However, it is gradually recognized that 
there are remarkable discrepancies between description logics (the logical 
foundation of OWL) and databases. As is well-known, DL is based on an 
open world assumption (OWA), permitting incomplete information in an 
ABox, while DB adopts a closed world assumption (CWA) requiring 
information always understood as complete. The unique name assumption 
(UNA) is often emphasized in DB but not in DL. OWL Flight (Bruijn et al., 
2005), furthermore, clarifies restrictions in DL and constraints in DB, of 
which the former is to infer and the latter to check. With negation, DBs 
prefer to “non-monotonic negation,” while DLs rely on “monotonic 
negation.” The following simple example gives us an intuitive understanding 
of such discrepancies. In a relational database, if “each employee must be 
known to be either male or female” is specified as an integrity constraint, the 
database system would check whether the gender of a person is given and set 
to be male or female during database updates. If the gender is not specified 
as male or female, the update would fail. In an ontology, the same 

                                                      
3 We are not considering extension allowing n-ary predicate with n>2. 
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requirement would naturally be represented by an axiom that Employee is 
subsumed by the union of Male and Female. Adding an employee without 
expressing he/she is an instance of Male or Female to the ontology would 
not result in any errors, and just imply that the employee could be either 
Male or Female. 

Some research work on extending DLs with integrity constraints are 
mainly based on autoepistemic extensions of DLs, such as the description 
logics of minimal knowledge and negation-as-failure (MKNF) (Donini et al., 
2002) and some nonmonotonic rule extensions of DLs (Motik et al., 2007). 
This may be inspired by Reiter’s observation that integrity constraints 
describe the state of the database and have an epistemic nature (Reiter, 
1992). Motivated by representing integrity constraints in MKNF, Mei et al. 
imposed epistemic operators on union and existential restrictions and 
explained them using integrity constraints in an ontology (Mei et al., 2006). 
Given the ABox of an SHI ontology is satisfiable with regard to its epistemic 
TBox, reasoning on such an ontology could be done by a datalog program. 

More recently, (Motik et al., 2006) proposes an extension of OWL that 
attempts to mimic the intuition behind integrity constraints in relational 
databases. Integrity constraints, introduced in (Mei et al., 2006), are used for 
conveying semantic aspects of OWL that are not covered by deductive 
databases, while (Motik et al., 2006) extends standard TBox axioms with 
constraint TBox axioms, s.t., for TBox reasoning, constraints behave like 
normal TBox axioms; for ABox reasoning, however, they are interpreted in 
the spirit of relational databases. Acting as checks, constraints are thrown 
away, if satisfied, without losing relevant consequences. Algorithms for 
checking constraint satisfaction are also discussed in (Motik et al., 2006), 
and the complexity of constraint checking is primarily determined by the 
complexity of the standard TBox. As a result, answering queries under 
constraints may be computationally easier due to a smaller input of the 
standard TBox concerning. Currently, (Motik et al., 2006) plans to 
implement such an approach in the OWL reasoner KAON2 and tests its 
usefulness on practical problems. 

Technically, (Motik et al., 2006) defines constraints in the same way as 
subsumptions, having the form of C⊑ D where C and D are DL concepts. 
Keeping the semantics of DLs unchanged, constraints rely on Herbrand 
models for checking satisfiability. Query answering is another reasoning 
service, provided the constraints are satisfied, and again uses the standard 
semantics of DLs after throwing those constraints away. That is, authors 
define TBox axioms, of which some are for inferring (namely, standard 
TBox axioms) and some for checking (namely, constraint TBox axioms). 
The extended DL system will provide support for DL reasoning as usual, in 
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addition to checking constraint satisfiability using the well-known methods 
of logic programming.  

By definition, an extended DL knowledge base is a triple K=(S, C, A) 
such that S is a finite set of standard TBox axioms, C is a finite set of 
constraint TBox axioms, and A is a finite set of ABox assertions, D(a), 
¬D(a), R(a,b), a≈b, a ≠ b, for D an atomic concept, R a role, and a, b 
individuals. Checking C in the minimal models of A ∪ S, the algorithm is 
sketched as follows (Motik et al., 2006). 

1. The standard TBox S is translated into a first-order formula 
π(S) according to the standard DL semantics, and the results are further 
translated into a (possibly disjunctive) logic program LP(S) = LP(π(S)) 
which can be exponentially larger than S. For each rule in LP(S) in which 
a variable x occurs in the head but not in the body, the atom HU(x) is 
added to the rule body. Additionally, for each individual a occurring in A 
∪ S, an assertion HU(a) is introduced. 

2. The constraint TBox C is translated into a first-order formula π(C), and 
CN(C) = CN(π(C)) is constructed as a stratified datalog program. For 
each formula ϕ, a unique predicate Eϕ is associated, also µ(ϕ) and sub(ϕ) 
are defined, where µ(ϕ) is a translation rule for ϕ and sub(ϕ) is the set of 
sub-formulae of ϕ, s.t. the following logic program is computed: CN(ϕ) 
= µ(ϕ) ∪ ∪ φ∈sub(ϕ) CN(φ). 

As a consequence, K=(S, C, A) satisfies the constraint TBox C if and 
only if A∪LP(S)∪CN(C) |=c EC, where |=c denotes the well-known 
entailment in stratified (possibly disjunctive) logic programs, and EC = Eπ(C).  

Intuitively, CN(C) simply evaluates C and ensures that EC holds in a 
model if and only if C is true in the model. Thus, EC is derived if and only if 
C is satisfied in all minimal models. Finally, suppose K=(S, C, A) be an 
extended DL knowledge base that satisfies C. For any union of conjunctive 
queries γ(v) over K=(S, C, A) and any tuple of constants u, it holds that 
A∪S∪C |= γ(u) if and only if A∪S |= γ(u).  

Not surprising, in query answering, constraints are thrown away, if they 
are satisfied. All other reasoning problems look like before, and the existing 
DL algorithms can be applied to solve them. 

3. REASONING WITH WSML-DL 

In this section, we take the approach of looking at another practical 
language for ontology reasoning. We focus on reasoning with the 
Description Logic-based Ontology language WSML-DL. We use WSML-
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DL as a more intuitive surface syntax for an expressive Description Logic 
(DL) in the WSML family of knowledge representation languages. Its syntax 
is inspired by First-order Logic modelling style. The WSML family of 
ontology languages is strongly related to the work on the Web Service 
Modeling Ontology WSMO and thus potentially very relevant in Semantic 
Web Services environments. 

WSML-DL is less expressive than OWL DL, given that WSML-DL does 
not support nominals. This reduces the complexity of WSML-DL, which is 
important for reasoning. In fact, until recently many state-of-the-art DL 
reasoners did not support reasoning with nominals, since no good 
optimization techniques were known.  

To enable the use of existing DL reasoning engines for WSML, we 
transform WSML-DL to OWL DL. This is because OWL DL is the 
appropriate syntax for DL reasoners as e.g. Pellet or KAON2. Then we 
integrate the reasoners into a flexible WSML reasoner framework. 

In the following, we first point out the particularities of DL reasoning. 
Next we describe the WSML-DL syntax and its correspondence to DLs. We 
show the translation from WSML-DL to OWL DL abstract syntax and 
explain the architecture and implementation of the WSML2Reasoner 
framework. 

3.1 Reasoning with description logics 

Description Logics can be seen as particularly restricted subset of 
Predicate Logic and constitute a family of logic-based knowledge 
representation formalisms. They have become a cornerstone of the Semantic 
Web for its use in the design of ontologies. 

DL knowledge bases are separated into two components: TBoxes, 
containing the terminological knowledge of a knowledge base (e.g. concept 
definitions), and ABoxes, containing the assertional knowledge (knowledge 
about the individuals of a domain). 

In DLs, there are different basic reasoning tasks for reasoning with 
TBoxes or ABoxes. As described in Baader et al. (2003), the main inference 
procedures with TBoxes are concept subsumption and concept satisfiability. 
With ABoxes, the main reasoning tasks are ABox consistency and instance 
checking.  

The OWL community focuses on entailment and query answering as the 
key inference services. Entailment can be reduced to satisfiability, while 
query answering amounts to compute the result of a query for instances with 
specific properties over a database, or an ABox respectively.  

http://tools.deri.org/wsml2reasoner/DIPFactSheet.html - 
ReasWSMLDLDescriptions of the main standard DL reasoning tasks, as 
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well as of some main non-standard inference tasks can be found in Baader et 
al. (2003). 

3.2 WSML-DL 

The Web Service Modeling Language WSML (de Bruijn et al., 2005) is a 
family of formal Web languages based on the conceptual model of WSMO 
(Roman et al., 2004). Conforming to different influences, as e.g. Description 
Logics (Baader et al., 2003), Logic Programming (Lloyd, 1987) and First-
order Logic (Fitting, 1996), there exist five variants of WSML: WSML-
Core, WSML-DL, WSML-Flight, WSML-Rule and WSML-Full. 

The WSML-DL variant captures the expressive Description Logic 
SHIQ(D). The following sections will introduce the WSML-DL syntax and 
its correspondence to Description Logics. 

3.2.1 WSML-DL syntax 

WSML makes a clear distinction between the modelling of conceptual 
elements (Ontologies, Web Services, Goals and Mediators) and the 
specification of logical definitions. Therefore the WSML syntax is split in 
two parts: the conceptual syntax and the logical expression syntax. The 
following sections will provide an overview of the WSML-DL conceptual 
and the logical expression syntax. A more detailed description can be found 
in de Bruijn et al. (2005). 

3.2.1.1 WSML-DL conceptual syntax  
A WSML ontology specification may contain concepts, relations, 

instances, relation instances and axioms. Concepts form the basic 
terminology of the domain of discourse and may have instances and 
associated attributes. A concept can be defined as subconcept of another 
concept, and in this case, a concept inherits all attribute definitions of its 
superconcept. 

A concept may have an arbitrary number of instances associated to it. 
The instance definition can be followed by the attribute values associated 
with the instance. Instead of being explicitly defined in the ontology, 
instances can exist outside the ontology in an external database. 

There are two sorts of attribute definitions that a concept may contain: 
inferring definitions with the keyword impliesType and constraining 
definitions with the keyword ofType. The constraining definitions may only 
be used for datatype ranges. Inferring attribute definitions are similar to 
range restrictions on properties in RDFS (Brickley and Guha, 2004) and 
OWL (Bechhofer et al., 2004). 
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In WSML-DL only binary relations are allowed. They correspond to the 
definition of attributes. The usage of inferring and constraining definitions in 
relations corresponds to their usage in attribute definitions. A relation can be 
defined as a subrelation of another relation. 

A relation may contain relation instances with parameter values 
associated to it. 

Axioms can be used to refine the definitions already given in the 
conceptual syntax, e.g. the subconcept and attribute definitions of concepts. 
By defining respective axioms one can define cardinality restrictions and 
global transitivity, symmetricity and inversity of attributes, just like in DLs 
or OWL. The logical expression syntax is explained in the following section. 

3.2.1.2 WSML-DL logical expression syntax 
The form of WSML-DL logical expressions and their expressiveness is 

based on the Description Logic SHIQ(D). The WSML-DL logical 
expression syntax has constants, variables, predicates and logical 
connectives, which all are based on First-order Logic modelling style.  

An atom in WSML-DL is a predicate symbol with one or two terms as 
arguments. WSML has a special kind of atoms, called molecules. There are 
two types of molecules that are used to capture information about concepts, 
instances, attributes and attribute values: “isa molecules,” that are used to 
express concept membership or subconcept definitions, and “object 
molecules,” that are used to define attribute and attribute value expressions. 

These molecules build the set of atomic formulae in WSML-DL. Using 
First-order connectives, one can combine the atomic formulae to 
descriptions and formulae. How exactly the molecules can be combined to 
build descriptions and formulae can be seen in detail in de Bruijn et al. 
(2005). 

3.2.2 WSML-DL vs. SHIQ(D) 

Table 4-1 illustrates the relationship between the WSML-DL semantics, 
the Description Logics syntax and the OWL DL syntax. The table follows de 
Bruijn et al (2005), Volz (2004) and Borgida (1996). 

In the table, “id” can be any identifier, “dt” is a datatype identifier, “X” 
can be either a variable or an identifier and “Y” is a variable. 

3.3 Translation of WSML-DL to OWL DL 

The following sections show the translation from WSML-DL to OWL 
DL abstract syntax (Steinmetz, 2006). The mapping is based on a mapping 
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from WSML-Core to OWL DL, which can be found in de Bruijn et al. 
(2005), and can be applied to WSML ontologies and logical expressions. 

Table 4-1. WSML-DL logical expressions — DL syntax 
WSML-DL DL Syntax OWL DL 
τ(lexpr impliedBy rexpr) rexpr ⊆  lexpr subClassOf 
τ(lexpr or rexpr) lexpr ∪  rexpr unionOf 
τ(lexpr and rexpr) lexpr ∩  rexpr intersectionOf 
τ(neg expr) ¬  expr complementOf 
τ(forall Y expr) .R∀ expr allValuesFrom 
τ(exists Y expr) .R∃ expr someValuesFrom 
τ(X memberOf id) idX :  Type 
τ(id1 subConceptOf id2) 21 idid ⊆  subClassOf 
τ(X1[id hasValue X2]) < X1, X2 > : id Property 
τ(id1[id2 impliesType id3]) 3.21 ididid ∀⊆  subPropertyOf 
τ(id1[id2 ofType dt]) dtidid .21 ∀⊆  subPropertyOf 
τ(p(X1,…,Xn)) < X1,…Xn > : p Type 
τ(X1 :=: X2) 21 XX ≡  equivalentClass 

3.3.1 Transformation steps 

The transformation of a WSML-DL ontology to an OWL DL ontology is 
done in a line of single transformation steps that are executed subsequently.  

 
• Relations, subrelations and relation instances are replaced by attributes 

and axioms, according to the preprocessing steps described in Steinmetz 
(2006). 

• All conceptual elements are converted into appropriate axioms specified 
by logical expressions. The resulting set of logical expressions is 
semantically equivalent to the original WSML ontology. 

• Equivalences and right implications in logical expressions are replaced 
by left implications. 

• Conjunctions on the left side and disjunctions on the right side of inverse 
implications are replaced by left implications. 

• Complex molecules inside of logical expressions are replaced by 
conjunctions of simple ones. 

 
As last step, the resulting axioms and logical expressions are transformed 
one by one into OWL descriptions according to the mapping presented in the 
following section. 

3.3.2 Mapping tables 

Tables 4-2 and 4-3 contain the mapping between the WSML-DL syntax 
and the OWL DL abstract syntax. The mapping is described through the 
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mapping function τ. In Table 4-3 we will introduce the functions α and ε, 
which are needed for the correct translation of WSML-DL descriptions. 

Boldfaced words in the tables refer to keywords in the WSML language. 
“X” and “Y” are meta-variables and are replaced with actual identifiers and 
variables during the translation, while “DES” stands for WSML-DL 
descriptions. IRIs4 are abbreviated by qualified names. The prefix ‘wsml’ 
stands for ‘http://wsmo. org/wsml/wsml-syntax#’ and ‘owl’ stands for 
‘http://www.w3.org/2002/07/owl#.’ 

Table 4-3 shows the mapping of WSML-DL descriptions that are used 
inside of axioms, as can be seen in Table 4-2. The descriptions are translated 
to concept expressions and to axioms. Concept expressions are again used 
within other expressions, while the axioms are added as such to the OWL 
ontology. The mapping τ is translated into a tuple of concept expressions and 
axioms as follows: τ (DES) = (ε (DES), α (DES)). 

The table also indicates a mapping for Qualified Cardinality Restrictions 
(QCRs). In WSML-DL the QCRs are represented by a combination of 
WSML-DL descriptions. The mapping to OWL DL is done according a 
workaround with OWL subproperties, described in Rector (2003). 

3.3.3 Restrictions to the transformation 

The transformation is not complete, i.e. WSML-DL supports features that 
cannot be expressed in OWL DL and that can thus not be translated. 
Concretely, OWL DL does not support datatype predicates. They are lost 
during the transformation. 

3.3.4 Translation example 

Table 4-4 shows two simple translation examples of both WSML-DL 
conceptual syntax and logical expression syntax. More examples can be 
found in Steinmetz (2006). 

3.3.5 Architecture and implementation 

In the following we will discuss the architecture and the implementation 
of a reasoner prototype that allows us to perform reasoning with WSML-DL 
ontologies using state-of-the-art reasoning engines by means of a wrapper 
component. 

                                                      
4 http://www.ietf.org/rfc/rfc3987.txt 
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Table 4-2. Mapping WSML-DL ontologies and axioms to OWL DL  
WSML-DL OWL-DL Remarks 
Mapping for ontologies 
τ(ontology id 
    header1 
    … 
    headern 
    ontology_element1 
    … 
    ontology_elementn 
) 

Ontology(id 
τ(header1) 
… 
τ(headern) 
τ(ontology_element1) 
… 
τ(ontology_elementn) 
) 

A header can contain 
nonFunctionalProperties, 
usesMediator and 
importsOntology statements. An 
ontology_element can be a 
concept, a relation, an instance, 
a relation instance or an axiom. 

τ(nonFunctionalProperties 
    id1 hasValue value1 
    … 
    idn hasValue valuen 
endNonFunctionalProperties)  

Annotation(id1 τ(value1)) 
… 
Annotation(idn τ(valuen)) 

For non functional properties on 
the ontology level “Annotation” 
instead of “annotation” has to 
be written. 

τ(importsOntology id) Annotation(owl#import id) “id” stands for the identifier of a 
WSML file. 

τ(usesMediator id) Annotation( 
    wsml#usesMediator id) 

As OWL doesn’t have the 
concept of a mediator, a 
wsml#usesMediator annotation 
is used. 

τ(datatype_id(x1,…,xn)) datatype_id(x1,…,xn)^^ 
τdatatypes(datatype_id) 

τdatatypes maps WSML datatypes 
to XML Schema datatypes, 
according to de Bruijn et al. 
(2005). 

τ(id) id In WSML an IRI is enclosed by 
_” and “, which are omitted in 
OWL abstract syntax. 

Mapping for axioms 

τ(axiom id log_expr nfp) τ(log_expr) A log_expr can be a logical 
expression like the following. 
The axiom does not keep its non 
functional properties. 

τ(id[att_id impliesType      
    range_id]) 

Class(id 
    restriction (att_id    
    allValuesFrom range_id)) 
ObjectProperty (att_id) 

 

τ(id[att_id ofType range_id]) Class(id 
    restriction (att_id    
    allValuesFrom range_id)) 
DatatypeProperty (att_id) 

 

τ(id1 subConceptOf id2) Class(id1 partial id2)  

τ(id[att_id hasValue value]) Individual (id 
    value (att_id τ(value))) 

 

  Continued 
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WSML-DL OWL-DL Remarks 
τ(id1 memberOf id2) Individual(id1 type(id2))  

τ(?x[att_id2 hasValue ?y]  
    impliedBy  
    ?x[att_id hasValue ?y]) 

SubProperty(att_id att_id2) A left implication with attribute 
values as left-hand and right-
hand sides is mapped to an 
OWL subProperty. 

τ(?x[att_id hasValue ?y]  
    impliedBy  
    ?x[att_id hasValue ?z] and  
    ?y[att_id hasValue ?z]) 

ObjectProperty(att_id  
   Transitive) 

Transitive Property 

τ(?x[att_id hasValue ?y]  
    impliedBy  
    ?y[att_id hasValue ?x]) 

ObjectProperty(att_id  
    Symmetric) 

Symmetric Property 

τ(?x[att_id hasValue ?y]  
    impliedBy  
    ?y[att_id2 hasValue ?x]) 

ObjectProperty(att_id    
    inverseOf(att_id2)) 

Inverse Property 

τ(?x memberOf concept_id2  
    impliedBy  
    ?x memberOf concept_id) 

Class(concept_id partial  
    concept_id2) 

Equivalence of concepts can be 
expressed as follows, with A 
and B being membership 
molecules: “A equivalent B” :=: 
“A impliedBy B and B 
impliedBy A”. 

τ(?x memberOf concept_id  
    impliedBy  
    ?x[att_id hasValue ?y]) 

ObjectProperty(att_id      
    domain(concept_id)) 

 

τ(?y memberOf concept_id  
    impliedBy  
    ?x[att_id hasValue ?y]) 

ObjectProperty(att_id  
    range(concept_id)) 

 

τ(DES1 impliedBy DES2) α(DES1) 
α(DES2) 
subClassOf(ε(DES2) ε(DES1)) 

“A impliedBy B” can be written 
as “subClassOf(B,A)”. 

τ()  If τ is applied for a non-
occurring production no 
translation has to be made 

 

Table 4-3. Mapping WSML-DL descriptions to OWL DL 
WSML-DL OWL-DL — concept 

expression ε 
OWL-DL — axiom α Remarks 

Mapping for descriptions (DES) 

τ(?x memberOf id) id Class(id) Membership 
molecule. 

τ(?x[att_id hasValue  
    ?y]) 

restriction(att_id  
    allValuesFrom( 
    owl:Thing)) 

ObjectProperty(att_id) Attribute value 
molecule with ?y 
being an unbound 
variable within the 
logical expression. 

  continued 
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WSML-DL OWL-DL — concept 

expression ε 
OWL-DL — axiom α Remarks 

τ(?x[att_id hasValue  
    ?y] and  
    ?y memberOf id) 

restriction (att_id  
    someValuesFrom( 
    id)) 

Class(id) 
ObjectProperty(att_id) 

Attribute value 
molecule with ?y 
being a bound 
variable. 

τ(DES1 and … and  
    DESn) 

intersectionOf(ε(DES1 

    ),…,ε(DESn)) 
α(DES1) 
… 
α(DESn) 

Conjunction. 

τ(DES1 or … or  
    DESn) 

unionOf(ε(DES1),…,ε 
    (DESn)) 

α(DES1) 
… 
α(DESn) 

Disjunction. 

τ(neg DES) complementOf(ε(DES 
    )) 

α(DES) Negation. 

τ(exists ?x (?y[att_id      
    hasValue ?x] and      
    DES)) 

restriction(att_id  
    someValuesFrom( 
    ε(DES))) 

α(DES) 
ObjectProperty(att_id)  

Existential 
quantification. 

τ(exists ?x (?x[att_id  
    hasValue ?y] and    
    DES)) 

restriction(inverseOf( 
    att_id)   
    someValuesFrom( 
    ε(DES))) 

α(DES) 
ObjectProperty(att_id) 

Existential 
quantification with 
inverse role. 

τ(forall ?x (DES  
    impliedBy   
    ?y[att_id hasValue  
    ?x])) 

restriction(att_id     
    allValuesFrom( 
    ε(DES))) 

α(DES) 
ObjectProperty(att_id) 

Universal 
quantification. 

τ(forall ?x (DES  
    impliedBy  
    ?x[att_id hasValue  
    ?y])) 

restriction(inverseOf( 
    att_id)    
    allValuesFrom( 
    ε(DES))) 

α(DES) 
ObjectProperty(att_id) 

Universal 
quantification with 
inverse role. 

τ(exists ?y1,…,?yn  
    (?x [att_id    
    hasValue ?y1] and  
    … and ?x[att_id  
    hasValue ?yn] and  
    DES and neg(?y1  
    :=: ?y2) and …  
    and neg(?yn–1 :=:  
    ?yn))) 

restriction(att_id’  
    minCardinality(n)) 

α(DES) 
ObjectProperty(att_id) 
ObjectProperty(att_id’  
    range(ε(DES))) 
SubPropertyOf(att_id’  
    att_id) 

(Qualified) 
minCardinality 
restriction. 

τ(forall ?y1,…,?yn+1  
    (?y1 :=: ?y2 or …  
    or ?yn :=: ?yn+1  
    impliedBy  
    ?x[att_id hasValue  
    ?y1] and … and  
    ?x[att_id hasValue  
    ?yn+1] and DES) 

restriction(att_id’  
    maxCardinality(n)) 

α(DES) 
ObjectProperty(att_id) 
ObjectProperty(att_id’  
    range(ε(DES))) 
SubPropertyOf(att_id’  
    att_id) 

(Qualified) 
maxCardinality 
restriction. 
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Table 4-4. Translation Example 
WSML-DL OWL DL 
concept Human 
    hasChild impliesType Human 
    hasBirthday ofType date 
 
 
 
axiom definedBy 
    ?x memberOf Man implies neg(?x 
    memberOf Woman). 

ObjectProperty(hasChild 
    domain(Human)  range(Human)) 
DatatypeProperty(hasBirthday 
    domain(Human) range(xsd:date )) 
Class(Human partial) 
 
Class(Man partial) 
Class(Woman partial) 
SubClassOf(Man complementOf(Woman)) 

The WSML2Reasoner framework5 is a flexible and highly modular 
architecture for easy integration of external reasoning components. It has 
been implemented in Java and is based on the WSMO4J6 project, which 
provides an API for the programmatic access to WSML documents. Instead 
of implementing new reasoners, existing reasoner implementations can be 
used for WSML through a wrapper that translates WSML expressions into 
the appropriate syntax for the reasoner.  

As already said above, the appropriate syntax for many DL Reasoners is 
OWL DL. We have implemented the transformation from WSML-DL to 
OWL DL using the Wonderweb OWL API (Bechhofer et al., 2003). The 
OWL API allows a programmatic access to OWL ontologies. It offers a 
high-level abstraction from the Description Logics underlying OWL DL, 
what increases the usage of DL knowledge bases in the Semantic Web area. 

The WSML2Reasoner framework infrastructure offers an interface that 
represents a façade to various DL reasoning engines. The façade provides a 
set of usual DL reasoning task methods and mediates between the OWL DL 
ontologies produced by the transformation and the reasoner-specific internal 
representations. For each new DL reasoning engine that is integrated into the 
framework, a specific adapter façade has to be implemented. 

The framework currently comes with façades for two OWL DL 
reasoners: Pellet7 and KAON28: 

• Pellet — Pellet is an open-source Java based OWL DL reasoner. It can 
be used directly in conjunction with the OWL API. 

• KAON2 — KAON2 is an infrastructure to manage, amongst others, 
OWL DL ontologies. It provides a hybrid reasoner that allows datalog-
style rules to interact with structural Description Logics knowledge 
bases. 

                                                      
5 http://tools.deri.org/wsml2reasoner/ 
6 http://wsmo4j.sourceforge.net/ 
7 http://pellet.owldl.com/ 
8 http://kaon2.semanticweb.org/ 



114 Chapter 4 
 
4. SEMANTIC BUSINESS PROCESS REPOSITORY 

In the final section of this chapter, we take a look at a practical use of 
ontological reasoning with large instance data. In particular, we describe the 
requirements on an ontology repository for Semantic Business Process 
Management (SBPM) and discuss how the various approaches described in 
the previous sections can be combined in order to meet those requirements. 

4.1 Requirements analysis 

In general, a repository is a shared database of information about 
engineered artifacts produced or used by an enterprise (Bernstein et al. 
1994). In SBPM, these artifacts are semantic business process models or 
process models for short.  

Process models are often modeled by business users with help of a 
process modeling tool. To support process modeling, the SBPR has to 
provide standard functionality of a database management system, such as 
storage of new process models, update, retrieval or deletion of existing 
process models, transaction support for manipulation of process models and 
query capability. The query capability enables business users or client 
applications to search process models in the SBPR based on the criteria 
specified. We classify the queries into two categories. The first category of 
queries can be answered based on the artifacts explicitly stored in the SBPR. 
This kind of queries is of the same kind as the queries that traditional 
database systems can process. The second category of queries are “semantic 
queries”, which can only be processed when the ontological knowledge of 
the process models is taken into account.  

The modeling of process models can be a time-consuming task. It may 
take days or even months for business users to finish modeling a given 
business process. Therefore, treating the entire modeling activity related to a 
process model as a single transaction is impractical. The SBPR has to 
provide check-in and check-out operations, that support long running 
interactions, enable disconnected mode of interaction with the SBPR, and 
are executed as separate short transactions. In this case the modeling tool 
could work in a disconnected mode regarding the SBPR. The process model 
in the SBPR can be locked when the modeling tool obtains it (check-out), so 
that no other users can modify the process model in the SBPR in the 
meantime. After the modeling work has been done the process model is 
updated in the SBPR and any locks that have been held for the process 
model are released (check-in). Note that the locking mechanism refers only 
to the locking of the process models in the SBPR. The process ontologies, 
that are stored separately in an ontology store and have been referenced by 
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the process models, are not locked simultaneously. Furthermore, in a 
distributed modeling environment several business users may work on the 
same process model simultaneously. A fine-grained locking of elements in a 
process model enables different business users to lock only the part of the 
process model they are working on, thus avoiding producing inconsistent 
process models.  

Process models may undergo a series of modifications undertaken by 
business users. The series of modification is called change history of the 
process model. The SBPR represents the change history as versions. A 
version is a snapshot of a process model at a certain point in its change 
history (Bernstein et al. 1994). In certain industry sectors corporations must 
record all the change histories of their process models for government 
auditing or for some legal requirements. From the modeling perspective it is 
meaningful to keep process models in different versions, so that business 
users can simply go back to an old version and develop the process model 
from the old version further. Due to these reasons the SBPR has to provide 
also versioning functionality, so that the change history of process models 
can be documented. 

4.2 Comparison of storage mechanisms 

As storing and querying process models stored are the main requirements 
for the SBPR, we evaluate in this section several options for storage 
mechanism and their query capabilities.  

A process model is an instance of a process ontology. Process ontologies 
which are developed in the SUPER project (SUPER, Hepp et al. 2007) 
include the Business Process Modeling Ontology (BPMO); the semantic 
Business Process Modeling Notation ontology (sBPMN), which is an 
ontological version of Business Process Modeling Notation (BPMN); the 
semantic Event Process Chain ontology (sEPC), which is an ontological 
version of Event Process Chain (EPC) (Keller 1992); the semantic Business 
Process Execution Language ontology (sBPEL), which is a ontological 
version of Business Process Execution Language (BPEL) (Andrews 2003). 
These ontologies are described using the ontology formalism Web Service 
Modeling Language (WSML) (de Bruijn et al. 2005). As said, there are five 
variants of WSML available, namely WSML-Core, WSML-DL, WSML-
Flight, WSML-Rule, and WSML-Full, differing in logical expressiveness 
and underlying language paradigm. The ontologies considered in this chapter 
are formalized using WSML-Flight, which is a compromise between the 
allowed expressiveness and the reasoning capability of the ontology 
language. In the following, we assume thus that a process model is an 
instance of a process ontology, which is specified in WSML-Flight. 
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For each option we take into account the expressiveness of the query 
language, the scalability of the query processing and the effort for the 
integration of the query processing with the underlying data storage. 
Scalability is a rather fuzzy term. In general, one would understand that in 
the context of reasoning. Reasoning is used to infer conclusions that are not 
explicitly stated but are required by or consistent with a known set of data 
(cf. (Passin, 2004)). A system or a framework is scalable if enlarging the 
data-set, which is in our context the set of actual process models that 
described using ontologies, leads to a performance loss that is tolerable. 
More formal, one could say that reasoning is scalable if augmenting the 
input size of the problem, which in this case refers to the ontologies plus the 
instance data of the ontologies, leads at most to a polynomial increase of the 
time in which reasoning can be performed. With regards to the reasoning 
capability, we consider two options, namely the storage mechanism with or 
without reasoning capability.  

4.2.1 Option 1: Without reasoning capability 

For storage mechanisms without reasoning capability we considered 
Relational Database Management System (RDBMS) and RDF store, which 
have been widely adopted at the time of writing. 

Queries against RDBMS are normally formalized using the Structured 
Query Language (SQL). SQL is quite powerful and bases on both the 
relational algebra and the tuple relational calculus (Siberschatz 2006). 
However, it has still some limitations. For example, take a simple query such 
as “Find all supervisors of the employee John Smith,” where supervisor is a 
binary relation indicating which employees are supervisors of other 
employees. This query requires computation of transitive closures on the 
personnel hierarchies. It is known that transitive closure can not be 
expressed using relational algebra (Libkin 2001, Abiteboul 1995). In SQL 
one can express transitive closures using WITH RECURSIVE to create 
recursive views, which could be very expensive. Furthermore the 
“supervisor” relationship must be stored explicitly in the database system. 
Because SQL can express queries that aim at the explicitly stored data, it has 
no capability to take into account of the implicit data, which can be derived 
from the instances of the ontologies based on the axioms specified there. 
This is not sufficient for the requirements on query processing of the SBPR. 

De Bruijn (2006) defined a RDF representation of WSML, which allows 
storing WSML data in a RDF store. RDF (RDF 2004) store is a framework 
providing support for the RDF Schema (RDFS 2004) inference and 
querying, which uses a relational database system as the underlying storage 
for the RDF data. In this section we only consider RDF stores without third-
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party inference engine or reasoner integrated. The inference here refers to 
the RDFS entailments supported by the RDFS semantics. There are already 
several reference implementations of RDF stores like Sesame9. The 
inference in such RDF stores is normally based on the RDF schema, which 
provides only restricted number of constructs to describe the relationships 
between the resources, as well as these between the properties, such as 
rdfs:subClassOf, rdfs:subPropertyOf. The query processing of RDF stores is 
based on special query languages for RDF data like Simple Protocol and 
RDF Query Language (SPARQL) or Sesame RDF Query Language 
(SeRQL). Using these query languages, one cannot express transitivity or 
transitive closure. Furthermore, these query languages take only into account 
explicitly stored data. The implicit data can be derived by the inference 
capability. However, the inference capability is very limited in RDF stores. 

4.2.2 Option 2: With reasoning capability 

Quite naturally, ontology stores (cf. Section 2.1) are a candidate 
technology for a Semantic Business Process repository. Jena 2, for example, 
is a RDF store, which supports not only native entailment of RDFS 
semantics but also third-party inference engines or reasoners. The primary 
use of plug-in such inference engine or reasoner is to support the use of 
languages such as RDFS and OWL which allow additional facts to be 
inferred from instance data and class descriptions, while the default OWL 
reasoner in Jena can only perform reasoning on a subset of OWL semantics. 
To provide complete support of OWL DL reasoning, one can use external 
OWL DL reasoners such as Pellet10, Racer11 or FaCT12. Jena can handle 
OWL DL, but there is only a partial bi-directional mapping defined between 
WSML-Core and OWL DL, which is not sufficient to fulfill the 
requirements of SBPR.  

Besides Jena, OWLIM (OWLIM, 2006) is a candidate implementation. 
OWLIM enables RDF storage with reasoning capability. OWLIM is a high 
performance Storage and Inference Layer (SAIL) for the Sesame repository. 
It provides OWL Description Logic Programs (DLP) (Grosof, 2003) 
reasoning, based on forward-chaining of entailment rules (Kiryakov, 2005). 
As argued in (Kiryakov 2005), OWLIM can query the Knowledge Base 
(KB) of 10 million statements with an upload and storage speed of about 
3000 statements per second. In order to achieve this, OWLIM materializing 
the KB. This means that for every update to the KB, the inference closure of 

                                                      
9 http://www.openrdf.org/index.jsp 
10 http://pellet.owldl.com/ 
11 http://www.racer-systems.com/ 
12 http://www.cs.man.ac.uk/~horrocks/FaCT/ 
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the program is computed. In an SBPM scenario this means that all 
conclusions that can be recursively obtained by applying process ontology 
rules, given certain instance data (process models), are computed. This 
approach has the advantage that querying or other reasoning tasks are 
performed fast because the reasoning was done beforehand. Moreover, one 
could store the inference closure in the persistent storage, effectively using 
optimization methods for storage. The approach taken in OWLIM shows that 
taking into account ontologies does not need to lead to a significant 
performance loss per se. Nonetheless, the approach has some disadvantages. 

First, OWLIM provides support for a fraction of OWL only. The 
supported fragment is close to OWL DLP and OWL-Horst (ter Horst 2005), 
which can be mapped to WSML and vice versa. However, the 
expressiveness of OWL DLP corresponds to WSML-Core. OWL-Horst is 
more powerful than WSML-Core, but it is still not as powerful as WSML-
Flight.  

Second, as we already discussed, the reasoning in OWLIM takes the 
forward-chaining approach. Forward-chaining means that the reasoner starts 
from the facts that are already known and infers new knowledge in an 
inductive fashion. The result of forward-chaining can be stored for reuse. 
This enables efficient query answering, because all facts needed for the 
query processing are already available in the data storage. But in the 
meanwhile this introduces also the expensive time and space consuming 
operations of data manipulation such as update or delete. Newly added or 
updated data leads to computing the inference closure in the SBPR again. 
Removal of process models is even more problematic, as facts from the 
inference closure that were introduced by this removed process models have 
also to be removed from the SBPR, which could lead to additional removal 
operations. In the worst case, this could require the recalculation of a large 
part of the inference closure. In practice, however, the removal of process 
models from the SBPR seems to be an action that is less common. The 
OWLIM approach also relies heavily on the fact that the semantics of OWL 
DLP and extensions towards OWL Lite are monotonic. The monotonic 
semantics allows for incremental additions to the process library, i.e., one 
can extend the current inference closure with new inferences. In the presence 
of non-monotonism, e.g., negation as failure as for example in WSML-Flight 
(de Bruijn 2006), such an incremental approach no longer works, as adding 
knowledge may prohibit previously made deductions.  

These limitations excluded the direct use of OWLIM as a repository for 
process models in the described scenario.  

IRIS (Integrated Rule Inference System)13 is an inference engine, which 
together with the WSML2Reasoner framework14, supports query answering 
                                                      
13 http://sourceforge.net/projects/iris-reasoner/ 
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for WSML-Core and WSML-Flight. In essence, it is a datalog engine 
extended with stratified negation15. The system implements different 
deductive database algorithms and evaluation techniques. IRIS allows 
different data types to be used in semantic descriptions according the XML 
Schema specification and offers a number of built-in predicates. 
Functionality for constructing complex data types using primitive ones is 
also provided. The translation from a WSML ontology description to datalog 
is conducted using the WSML2Reasoner component. This framework 
combines various validation, normalization and transformation 
functionalities which are essential to the translation of WSML ontology 
descriptions to set of predicates and rules. Further on, rules are translated to 
expressions of relational algebra and computed using the set of operations of 
relational algebra (i.e., union, set difference, selection, Cartesian product, 
projection etc.). The motivation for this translation lies in the fact that the 
relational model is the underlying mathematical model of data for datalog 
and there are a number of database optimization techniques applicable for 
the relational model. Finally optimized relational expressions serve as an 
input for computing the meaning of recursive datalog programs. 

The core of the IRIS architecture, as shown in Figure 4-4, is defined as a 
layered approach consisting of three components: 

• Knowledge Base API, 
• Invocation API, and 
• Storage API. 

The knowledge base API is a top API layer encapsulating central 
abstractions of the underlying system (e.g., rule, query, atom, tuple, fact, 
program, knowledge base, context etc.). The purpose of this layer is to 
define the basic concepts of the data model used in IRIS as well as to define 
the functionality for the knowledge base and program manipulation. 

The invocation API characterizes a particular evaluation strategy (e.g., 
bottom-up, top-down or a blend of these two strategies) and evaluation 
methods for a given strategy which are used with respect to a particular logic 
program. IRIS implements the following evaluation methods16: 

• Naive evaluation, 
• Semi-naive evaluation, and 
• Query-subquery (QSQ) evaluation. 

                                                                      
14 WSML2Reasoner framework: http://tools.deri.org/wsml2reasoner/ 
15 IRIS is continuously being developed and the support for non-stratified negation and unsafe 

rules is envisioned in coming releases. 
16 More evaluation techniques are under development. 
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The storage layer defines the basic API for accessing data and relation 
indexing. A central abstraction in this layer is a relation which contains a set 
of tuples and serves as an argument in each operation of relation algebra. 
The implementation of IRIS relation is based on Collection and SortedSet 
Java interfaces where red-black binary search trees are utilized for indexing. 

Current inference systems exploit reasoner methods developed rather for 
small knowledge bases. Such systems either process data in the main 
memory or use a Relational Database Management System (RDBMS) to 
efficiently access and do relational operations on disk persistent relations. 
Main memory reasoners cannot handle datasets larger than their memory. On 
the other side, systems based on RDBMSs may feature great performance 
improvement comparing with main memory systems, but efficient database 
techniques (e.g., cost-based query planning, caching, buffering) they utilize 
are suited only for EDB relations and not fully deployable on derived 
relations. 
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Figure 4-4. IRIS architecture 

IRIS is designed to meet the requirements of large-scale reasoning. Apart 
from the state-of-the-art deductive methods, the system utilizes database 
techniques and extends them for implicit knowledge in order to effectively 
process large datasets. We are building an integrated query optimizer. The 
estimation of the size and evaluation cost of the intentional predicates will be 
based on the adaptive sampling method (Liption 1990, Ruckhaus 2006), 
while the extensional data will be estimated using a graph-based synopses of 
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data sets similarly as in Spiegel (2006). Further on, for large scale reasoning 
(i.e., during the derivation of large relations which exceeds main memory), 
run time memory overflow may occur. Therefore in IRIS we are developing 
novel techniques for a selective pushing of currently processed tuples to 
disk. Such techniques aim at temporarily lessening the burden of main 
memory, and hence to make the entire system capable of handling large 
relations. 

Based on this comparison, a RDBMS integrated with the IRIS inference 
engine was regarded as the most suitable solution to fulfill the requirements 
of the SBPR in our use case.  

4.3 Proposed solution 

In this section, we present the overall architecture of the SBPR based on 
the integration of RDBMS technology and the IRIS inference engine. We 
utilize a layered architecture consisting of the three layers (1) Semantic 
Business Process Repository API, (2) Service Layer, and (3) Persistence 
Layer, as illustrated in Figure 4-5. 

Service Layer

Version ManagerLock Manager IRIS Framework

Persistence Layer

Semantic Business Process Repository API

Relational Database 
System

Service Layer

Version ManagerLock Manager IRIS Framework

Persistence Layer

Semantic Business Process Repository API

Relational Database 
System

 

Figure 4-5. SBPR architecture 

Semantic Business Process Repository API  

The Semantic Business Process Repository API provides the 
programmatic access to the SBPR. It includes the API designed after the 
CRUD pattern, which represents the four basic functions of persistent 
storage, namely create, retrieve, update and delete. Besides the CRUD API, 
the SBPR API also provides check-in and check-out functions for long-
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running process modeling. The query API rounds off the SBPR API by 
providing programmatic access to the IRIS Framework for query answering. 

Service Layer 

The Service Layer implements the SBPR API and processing logic of the 
SBPR. The Service Layer contains three modules: Lock Manger, Version 
Manager, and the IRIS Framework. The Lock Manager takes charge of 
requests on locking and unlocking for the process models in the SBPR. A 
locking request can only be granted when the process model is not yet 
locked. The Version Manager takes care of the management of the versions 
of process models. To record the modeling history, every new process model 
or changed process model is stored as a new version in the SBPR. The IRIS 
Framework takes the responsibility for the query processing in SBPR.  

Persistence Layer 

The Persistence Layer manages the data access to the underlying 
relational database system and provides an abstraction for data access 
operations. It provides persistent solutions for persistent objects by adopting 
Object Relational Mapping (ORM) middleware such as Hibernate and Data 
Access Object (DAO) pattern. 

The proposed solution is currently used and evaluated in the SUPER 
project17, in which a reference architecture and practical use cases of 
Semantic Business Process Management is being developed. 

5. CONCLUSIONS AND DIRECTIONS FOR 
FUTURE RESEARCH 

In this chapter, we have tried to summarize the theoretical challenges and 
practical problems of storing ontologies and associated data in a scalable 
way while considering the implicit facts of the ontology for query answering 
and other tasks. 

We gave an overall introduction to some well-known ontology 
repositories, including native stores and database based stores, and 
highlighted strengths and limitations of each store. It is reported in (Ma et 
al., 2006) that Minerva achieves good performance in benchmarking tests. 
We took Minerva as an example to analyze ontology storage in databases in 

                                                      
17 http://www.ip-super.org 



4. Ontology Reasoning with Large Data Repositories 123
 
depth, as well as discussed efficient indexes for scaling up ontology 
repositories. We then discussed a scalable reasoning method for handling 
expressive ontologies, as well as summarized other similar approaches. 

We have presented a framework for reasoning with Description Logic 
based on WSML as a formalism of particular relevance in the field of 
Semantic Web services. Our framework builds on top of a transformation 
from WSML-DL to OWL-DL and supports all main DL-specific reasoning 
tasks. We thus linked the work for storing OWL ontologies, to the work on 
WSML-DL, providing the reader with an insight in storing and reasoning 
with both OWL-DL and WSML-DL ontologies. 

As a practical use case of storing ontologies and reasoning with them, we 
presented our work on developing aSemantic Business Process Repository 
(SBPR) for the semantically supported management of business process 
models. We first analyzed the main requirements on SBPR. Then, we 
compared different approaches for storage mechanisms and showed how 
combining a RDBMS with the IRIS inference engine was a suitable solution, 
due to the expressiveness of the query language and the required reasoning 
capability. The IRIS inference engine is currently a WSML-Flight reasoner. 
The system is extensively being developed to support reasoning with 
WSML-Rule (i.e., support for function symbols, unsafe rules and non-
stratified negation). Further on, IRIS will tightly integrate a permanent 
storage system designed for distributed scalable reasoning. One of our major 
objectives is the implementation of Rule Interchange Format (RIF)18 in IRIS. 
Implementing RIF, IRIS will be capable of handling rules from diverse rule 
systems and will make WSML rule sets interchangeable with rule sets 
written in other languages that are also supported by RIF. Finally, IRIS will 
implement novel techniques for reasoning with integrating frameworks 
based on classical first-order logic and nonmonotonic logic programming as 
well as techniques for Description Logics reasoning. 

ADDITIONAL READING 

For more information on reasoning with ontologies and knowledge 
representation in general we suggest the two books by Baader et al (2003) 
and Baral (2003). The former provides an excellent introduction to 
Description Logic reasoning, while the second will get the reader up-to-date 
in the area of declarative knowledge representation with logic programming. 

                                                      
18 Rule Interchange Format-W3C Working Group: http://www.w3.org/2005/rules/ 
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Abstract: The research area of ontology engineering seems to have reached a certain 
level of maturity, considering the vast amount of contemporary methods and 
tools for formalising and applying knowledge representation models. 
However, there is still little understanding of, and support for, the evolutionary 
aspects of ontologies. This is particularly crucial in distributed and 
collaborative settings such as the Semantic Web, where ontologies naturally 
co-evolve with their communities of use. For managing the evolution of single 
ontologies, established techniques from data schema evolution have been 
successfully adopted, and consensus on a general ontology evolution process 
model seems to emerge. Much less explored, however, is the problem of 
evolution of interorganisational ontologies. In this “complex” and dynamic 
setting, a collaborative change process model requires more powerful 
engineering, argumentation and negotiation methodologies, complemented by 
support for context dependency management.. It turns out that much can be 
learned from other domains where formal artefacts are being collaboratively 
engineered. In particular, the field of system engineering offers a wealth of 
techniques and tools for versioning, merging and evolving software artefacts, 
and many of these techniques can be reused in an ontology engineering 
setting. Based on this insight, this chapter gives a unified overview of the wide 
variety of models and mechanisms that can be used to support all of the above 
aspects of ontology evolution. The key remaining challenge is to construct a 
single framework, based on these mechanisms, which can be tailored for the 
needs of a particular environment. 

Keywords: collaborative ontology engineering; context dependency management; 
ontology evolution; ontology versioning 



132 Chapter 5 
 
1. INTRODUCTION 

The considerable amount of methods and tools for formalising (Sowa, 
1984; Gruber, 1993; Guarino, 1998; Meersman, 1999) and applying 
knowledge representation (KR) models that is available today, suggests that 
the area of knowledge engineering has come to a state of stable maturity. 
However, there is still little understanding of, and support for, the 
evolutionary aspects of knowledge — in its most concrete manifestation 
called an ontology. This is particularly crucial in distributed and 
collaborative settings such as the Semantic Web, where ontologies naturally 
co-evolve with their communities of use (de Moor et al., 2006). 

For managing the evolution of single ontologies, established techniques 
from data schema evolution have been successfully adopted, and consensus 
on a generally agreed ontology evolution process model seems to emerge 
(Maedche et al., 2003). Much less explored, however, is the evolution of 
interorganisational ontologies, which are usually engineered in distributed 
and collaborative settings. In such settings, different organisations 
collaboratively build a common ground of the domain. Ontologies are 
instrumental in this process by providing formal specifications of shared 
semantics. Such semantics are a solid basis to define and share (business) 
goals and interests, and ultimately develop useful collaborative services and 
systems.  

However, scalable ontology engineering is hard to do in 
interorganisational settings where there are many pre-existing organisational 
ontologies and ill-defined, rapidly evolving collaborative requirements. A 
complex socio-technical process of ontology alignment and meaning 
negotiation is therefore required (de Moor et al., 2006). Furthermore, 
sometimes it is not necessary (or even possible) to reach for context-
independent ontological knowledge, as most ontologies used in practice 
assume a certain context and perspective of some community (Schoop et al., 
2006). Much valuable work has been done in the Semantic Web community 
on the formal aspects of ontology elicitation and application. However, the 
socio-technical aspects of the ontology engineering process in complex and 
dynamic realistic settings are still little understood, and introduce new 
problems in ontology evolution that where so far not unified. 

One of the most important problems in collaborative ontology 
engineering is the detection and resolution of meaning ambiguities and 
conflicts during the elicitation and application of ontologies (De Leenheer 
and de Moor, 2005). The problem is principally caused by three facts: (i) no 
matter how expressive ontologies might be, they are all in fact lexical 
representations of concepts, relationships, and semantic constraints; (ii) 
linguistically, there is no bijective mapping between a concept and its lexical 
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representation; and (iii) terms can have different meaning in different 
contexts of use. Consider for example phenomena such as synonyms and 
homonyms. Furthermore, ontologies are particularly elicited from tacit 
knowledge which is subjective and difficult to articulate. Resulting 
misunderstandings and ambiguities can have adverse consequences for the 
cost-effectiveness and viability of ontologies as a solution to a given 
problem. 

Therefore, more powerful support for versioning and merging is required 
in order for domain experts to collaboratively and incrementally, build and 
manage increasingly complex versions of ontological elements and their 
diverging and converging relationships. Instead of being frustrated by out-
of-control change processes, proper ontology versioning support will allow 
human experts to focus on the much more interesting meaning elicitation, 
interpretation, and negotiation process. It turns out that much can be learned 
from other domains where formal artefacts are being collaboratively 
engineered. In particular, the field of system engineering offers a wealth of 
techniques and tools for versioning, merging and evolving software artefacts 
(Mens, 2002), and many of these techniques can be reused in an ontology 
engineering setting. 

Regardless of the complexity of the ontology engineering setting, what is 
currently lacking is a unified overview of the wide variety of models and 
mechanisms that can be used to support all of the above aspects of ontology 
evolution. Such an overview should not be restricted to data and knowledge 
engineering literature above as apparently much can be learned from other 
domains where formal artefacts are being engineered and evolved (De 
Leenheer et al., 2007). The key remaining challenge is to construct a single 
change management framework, based on these mechanisms, which can be 
tailored for the needs of a particular community of use. 

This chapter is organised as follows. In Section 2 we consider the 
dynamic aspects of ontology engineering. Next, in Section 3, we introduce a 
context-independent evolution process model for ontologies that are 
developed and evolved by a single user. We describe the essential activities 
of this process and substantiate these with a survey of existing approaches, 
including work that has been done in other system engineering domains such 
as software engineering and database engineering. Section 4 considers the 
collaborative and distributed aspects of ontology engineering. From these 
observations we come up with a community-goal-driven change process 
model. We characterise the alternative methodological approaches and 
socio-technical aspects to be considered when multiple knowledge workers 
collaborate to the ontology. We address typical problems in this setting such 
as meaning negotiation and argumentation methods, and context dependency 
management. We provide a survey of existing approaches from different 
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system engineering domains, and discuss future challenges (Section 5). 
Finally, we complete with an overview of state-of-the-art ontology evolution 
tools (Section 6), a digest for additional reading (Section 7). 

2. THE DYNAMIC ASPECTS OF ONTOLOGY 
ENGINEERING 

Communication is the primary basis for coordinated action (and hence 
achieving goals) between different and diverse communities. When a 
communication breakdown occurs, it is important to capture and agree on 
the semantics of the concepts being communicated. Consider for example 
the business goal for delivering goods between the producer of the goods, 
and its delivery service. Implementing such a new delivery line requires 
agreement about a new workflow model, and the types of products that are 
to be delivered. This implies a number of change requests, which are 
formulated by the knowledge engineer in terms of ontology engineering 
processes. 

2.1 Ontology engineering processes 

In (De Leenheer et al., 2007), we identified some important types of 
context-driven ontology engineering processes that address these issues. 
These are macro-level processes in that they (in a particular methodological 
combination) provide the goals of the ontology engineering process. These 
include lexical grounding (and word sense disambiguation), attribution (of 
concepts), specialisation, axiomatisation, and operationalisation. In their 
operational implementation, which we respectively call OE micro-processes, 
methodologies differ widely. 

Figure 5-1 illustrates a middle-out approach to ontology engineering: 
central are the processes, where each process is dependent on the result of 
the previous process (bottom-up semantic freedom). Each of these processes 
have optional constraints imposed by depending artefacts or running 
(Semantic Web) services (top-down-framing). Finally, the axiomatised 
artefact is operationalised and fed into the actual knowledge structures. 
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Figure 5-1. A middle-out approach to ontology engineering: central are the processes, where 
each process is dependent on the result of the previous process (bottom-up semantic freedom). 
Each of these processes have optional constraints imposed by depending artefacts or running 
(Semantic Web) services (top-down-framing). 

2.1.1 Natural language grounding and lexical disambiguation 

All meaning (semantics) is for communication purposes about a universe 
of discourse. It is represented independent of language but necessarily must 
be entirely rooted and described in (natural) language. Linguistic 
“grounding” of meaning is achieved through elicitation contexts, which can 
be mappings from identifiers to source documents such as generalised 
glosses, often in natural language (Jarrar, 2006; De Leenheer et al., 2007). 
Natural language labels for concepts and relationships bring along their 
inherent ambiguity and variability in interpretation (Bouaud et al., 1995), 
therefore this process is inseparable from lexical disambiguation. 

Data models, such as data or XML schemas, typically specify the 
structure and integrity of data sets. Hence, building data schemas for an 
enterprise usually depends on the specific needs and tasks that have to be 
performed within this enterprise. Data engineering languages such as SQL 
aim to maintain the integrity of data sets and only use a typical set of 
language constructs to that aim (Spyns et al., 2002), e.g., foreign keys.  
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The schema vocabulary is basically to be understood intuitively (via the 
terms used) by the human database designer(s). The semantics of data 
schemas often constitute an informal agreement between the developers and 
an intended group of users of the data schema (Meersman, 1999), and finds 
its way only in application programs that use the data schema instead of 
manifesting itself as an agreement that is shared amongst the community. 
When new functional requirements pop up, the schema is updated on the fly. 
This schema update process is usually controlled by one designated 
individual.  

In (collaborative) ontology engineering, however, absolute meaning is 
essential for all practical purposes, hence all elements in an ontology must 
ultimately be the result of agreements among human agents such as 
designers, domain experts, and users. In practice, correct and unambiguous 
reference to concepts or entities in the schema vocabulary is a real problem; 
often harder than agreeing about their properties, and obviously not solved 
by assigning system-owned identifiers. At the start of the elicitation of an 
ontology, its basic knowledge elements (such as concepts and relationships) 
are extracted from various resources such as a text corpus or an existing 
schema, or rashly formulated by human domain experts through, e.g., 
tagging. Many ontology approaches focus on the conceptual modelling task, 
hence the distinction between lexical level (term for a concept) and 
conceptual level (the concept itself) is often weak or ignored. In order to 
represent concepts and relationships lexically, they usually are given a 
uniquely identifying term (or label). However, the context of the resource the 
ontology element was extracted from is not unimportant, as the meaning of a 
concept behind a lexical term is influenced by this elicitation context. When 
eliciting and unifying information from multiple sources, this can easily give 
rise to misunderstandings and ambiguities. An analysis of multiple contexts 
is therefore generally needed to disambiguate successfully (Bachimont et al., 
2002; De Leenheer and de Moor, 2005). 

2.1.2 Application 

For the application of an ontology, the interpretation of the knowledge 
artefacts (which are referred to by terms) of the ontology is ambiguous if the 
context of application, such as the purpose of the user, is not considered. 
Different domain experts might want to “contextualise” elements of an 
ontology individually for the purpose of their organisation, for example by 
selection, specialisation or refinement, leading to multiple diverging 
ontologies that are context-dependent on (read: contextualisations of) the 
same (part of an) ontology. 
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Divergence is the point where domain experts disagree or have a conflict 
about the meaning of some knowledge element in such a way that 
consequently their ontologies evolve in widely varying directions. Although 
they share common goals for doing business, divergent knowledge positions 
appear as a natural consequence when people collaborate in order to come to 
a unique common understanding. Divergence arises because of differences 
among individuals. Individuals’ experiences, personalities, and commitments 
become the potential for conflicts. According to Putnam and Poole (1987), a 
conflict is:  

“the interaction of interdependent people who perceive opposition of 
goals, aims, and values, and who see the other party as potentially 
interfering with the realisation of these goals.” 

This definition mainly underlines three characteristics of conflict: 
interaction, interdependence, and incompatible goals. In our context, goals 
should be understood as meaning. Incompatible meaning refers to the 
divergent ontological elements caused by alternative perspectives. Diaz 
(2005) refers to this as cognitive conflict. 

Rather than considering this to be a problem, conflicts should be seen as 
an opportunity to negotiate about the subtle differences in interpretation, 
which will ultimately converge to a shared understanding disposed of any 
subjectivity. However, meaning conflicts and ambiguities should only be 
resolved when relevant. It is possible that people have alternative 
conceptualisations in mind for business or knowledge they do not wish to 
share. Therefore, in building the shared ontology, the individual ontologies 
of the various partners only need to be aligned insofar necessary, in order to 
avoid wasting valuable modelling time and effort. Furthermore, even if 
considered relevant from the community point of view, the changes that are 
caused by convergence or divergence are not always desired to be 
propagated to dependent artefacts in a push-based way: some applications 
might desire to decide on their own pace when to commit to the new version 
(Maedche et al., 2003).  

2.1.3 Axiomatisation 

Domain constraints (e.g., database constraints), rules and procedures are 
essential to achieve an understanding about a domain’s semantics but 
agreement about them is very difficult and nearly always specific to a 
context of application. An optimal ontological commitment constrains the 
possible interpretations of an ontology so that they can be understandable 
and usable (Gruber, 1993; Guarino, 1998). Furthermore, from an ontology 
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application’s point of view, constraints describe permitted updates of data 
stores that exist entirely within that application’s realm.  

This suggests an approach were an ontology is composed of separate 
inter-dependent layers, with on the lowest level the conceptualisation (i.e., 
lexical representation of concepts and their interrelationships), and continued 
with a number of increasingly restricting axiomatisation (i.e., semantic 
constraints) layers articulating different levels of ontological commitment. 
The goal of this separation, referred to as the double articulation principle 
(Spyns et al., 2002), is to enhance the potential for re-use and design 
scalability. Reuse is only engendered by letting the application determine its 
own level of commitment to the ontology, i.e., by only committing to that 
layer that best approximates its intended meaning. The latter ought to be an 
optimal trade-off between a general-purpose and application-specific 
axiomatisation.  

2.1.4 Operationalisation 

Once (a version of) an ontology has been verified and validated (see 
further Sect. 3.2.4), it can be translated into an operational language that is in 
accordance with the application pool. For example, the most widely used 
recommendations on the Semantic Web are XML, RDF(S) and OWL. 
However, as community goals tend to shift depending on the changing 
shared business interests, an operationalised ontology version will soon 
become obsolete. An ontology should capture these changes continuously in 
order to co-evolve driven by the ontology engineering activities described so 
far.  

2.2 Context dependencies 

Context dependencies between artefacts play an important role for the 
elicitation, application, and analysis of ontologies (e.g., Maedche et al., 
2003; Haase et al., 2004), but also for their correct interpretation (De 
Leenheer and de Moor, 2005). The question is how to apply and integrate 
them to increase the quality of such ontology engineering processes. For 
example, in Fig. 5-2: the interpretation of the terms A, B, C, and F on the 
right-hand side is dependent on their lexical grounding and disambiguation 
on the left-hand side. The dependency is further formalised by a sequence of 
operations defining relationships between the terms. 
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Figure 5-2. An illustration of a context dependency: the interpretation of the terms A, B, C, 
and F on the right-hand side is dependent on their lexical grounding and disambiguation on 
the left-hand side. The dependency is further formalised by a sequence of operations defining 
relationships between the terms. 

Another particular example in the sense of conceptual graph theory 
(Sowa, 1984) would be a specialisation dependency for which the 
dependency constraint is equivalent to the conditions for contextual graph 
specialisation (Sowa, 1984: pp. 97). A specialisation dependency 
corresponds to a monotone specialisation. For instance, an organisational 
definition of a particular task (the entity) can have a specialisation 
dependency with a task template (its context). The constraint in this case is 
that each organisational definition must be a specialisation of the template 
(de Moor et al., 2006). Furthermore, ontologies naturally co-evolve with 
their communities of use: whenever the template evolves, all context-
dependent specialisations should evolve along. 

In (De Leenheer et al., 2007), we give a non-exhaustive analysis of 
context dependency types and meaning conflicts between diverging 
meanings as a natural consequence of interorganisational ontology 
engineering. We illustrate these dependencies by formally describing and 
decomposing the OE macro-processes in terms of a non-exhaustive set of 
primitives such as change operators for selecting, linking, and changing 
knowledge elements.  

Tracing context dependencies by means of micro-process primitives, 
provides a better understanding of the whereabouts of knowledge elements 
in ontologies, and consequently makes negotiation and application less 
vulnerable to meaning ambiguities and conflicts, hence more practical. 
Instead of being frustrated by out-of-control change processes, proper 
context dependency management support will allow human experts to focus 
on the much more interesting meaning interpretation and negotiation 
processes.  

Particularly in collaborative applications where humans play an 
important role in the interpretation and negotiation of meaning (de Moor, 
2005), such frustrating misunderstanding and ambiguity can have adverse 
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consequences for the cost-effectiveness and viability of ontologies as a 
solution to bring the Semantic Web to its full potential. 

3. SINGLE ONTOLOGY EVOLUTION 

The key challenge of this chapter was to provide a unified framework and 
process model for ontology evolution that describes and supports all high-
level activities related to evolving ontologies in a collaborative and 
distributed setting. Before undertaking this challenge, however, let us first 
focus on the more humble task of coming up with an evolution process for 
ontologies developed and evolved by a single user. This single user ontology 
evolution view seems to become generally accepted, since it has been 
proposed in various forms by different authors. For example, Maedche et al. 
(2003) have proposed a basic process model for evolving ontologies. We 
first take a look at the work that has been done in data schema evolution.  

3.1 Data schema evolution 

Although the issues in schema evolution are not entirely the same as in 
ontology evolution, the philosophy and results from schema evolution in 
general1 have been fruitfully reconsidered for the treatment of the ontology 
evolution problem. The resemblances and differences between ontologies 
and data models are widely discussed in literature such as Meersman (2001), 
Spyns et al. (2002), and Noy and Klein (2004). The basic argumentation 
behind comparing ontologies and data schemas is that (i) formally, all such 
kinds of formal artefacts are lexically represented by sets of predicates (data 
models); and (ii) they describe some domain by means of conceptual entities 
and relationships in a (not necessarily) shared formal language2 (Meersman, 
2001).  

Furthermore, the following rigorously cited definitions for schema 
evolution and versioning by Roddick (1995), indicate the similar situation 
we are confronted with in ontology evolution.  

• Schema evolution is the ability to change a schema of a populated 
database without loss of data, the latter which means providing access to 
both old and new data through the new schema.  

                                                      
1 object-oriented (OO) database schemas, relational schemas, entity-relationship (ER) 

schemas, fact-oriented schemas (NIAM (Verheijen and Van Bekkum, 1982), ORM 
(Halpin, 2001), etc.) in particular 

2 e.g., (De Troyer, 1993) presents a language that is able to represent ER, BRM, or relational 
schemas 
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• Schema versioning is the ability to access all the data (both old and new) 

through user-definable version interfaces. A version is a reference that 
labels a quiet point in the definition of a schema. 

Similarly, in our survey we will consider versioning as a supportive activity 
along the different phases of the evolution process. 

Looking at ontology evolution merely from this “formal” point of view, 
we can adopt methods and techniques from data schema evolution. 
Significant examples include transformation rules (in terms of pre- and post-
conditions) to effect change operators on data schemas and change 
propagation to the data (Banerjee et al., 1987), frameworks for managing 
multiple versions of data schemas coherently (Kim and Chou, 1988; 
Roddick, 1995) and models for different levels of granularity in change 
operators, viz. compound change operators3 (Lerner, 2000). Furthermore, 
changes in one part of a schema might trigger a cascade of changes in other 
parts (Katz, 1990).  

Main results in ontology evolution have been reported by Oliver et al. 
(1999), Heflin (2001), Klein et al. (2002), Stojanovic et al. (2002), Maedche 
et al. (2003), and Plessers (2006). They base their work predominantly in the 
previous mentioned schema evolution techniques, next to addressing 
particular needs for evolution of ontologies. Next, we will elaborate on this 
work by positioning it in the appropriate activities within a generic process 
model for single ontology evolution. 

3.2 Single user change process model 

All ontology engineering processes define a change process that involves 
several activities. In this section, we propose a more sophisticated single user 
change process model, based on the experience borrowed from the domain 
of software and systems engineering, where the use of process models is 
commonly accepted. Over the years, various process models have been 
proposed, and dedicated tools to support these process models are in active 
use today. 

When it comes to evolution, there are various so-called “evolutionary 
process models,” that explicitly consider software evolution as a crucial 
activity.4 There are even dedicated models that detail the different 
subactivities of the evolution process itself, and explain how they are related. 
One such process model, that we will refer to as the change process model is 

                                                      
3 e.g., moving an attribute x from a class A to a class B, means (more than) successively 

deleting x in A and adding x in B 
4 Examples of such models are the so-called spiral model of software development (Boehm, 

1988) and the staged model for software evolution (Bennett and Rajlich, 2000) 
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depicted in Fig. 5-3. It is based on Bennett and Rajlich (2000) and essentially 
distinguishes four activities over three phases (initiation, execution, and 
evaluation) in the process of making a change: requesting a change, 
planning the change, implementing the change, and verifying and validating 
the change. It is an iterative process that needs to be applied for each 
requested change. The process requires decisions on whether the requested 
change is relevant, whether it is feasible to implement this change, and 
whether the change has been implemented properly. 

 

Figure 5-3. A context-independent change process model. 

Interestingly, the activities of the proposed change model of Fig. 6-1 are 
generic, in the sense that they are not typical to software systems, but can be 
applied to any type of artefact that is subject to changes. As such, this 
change process can be interpreted and reused in the context of ontology 
evolution without any difficulty whatsoever. In the remainder of this section, 
we will explore the different activities of the change process model in more 
detail, seen from the single user ontology evolution point of view. 

3.2.1 Requesting the change 

Requesting the change has to do with initiating the change process. Some 
stakeholder wants to make a change to the ontology under consideration for 
some reason, and will post a so-called change request.  

 
Change representation: Usually a change request is formalised by a 

finite sequence of elementary change operators. The set of applicable 
change operators to conduct these change operators is determined by the 
applied KR model. In principle, this set should subsume every possible type 
of ontology access and manipulation (completeness issue), and in particular, 
the manipulation operators should only generate valid ontologies (soundness 
issue) (Banerjee et al., 1987; Peters and Özsu, 1997). In practice, however, 
ontology evolution frameworks only consider a non-exhaustive set of 
operators, tuned to the particular needs of the domain.  
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In the data schema and ontology evolution literature, much work focuses 
on devising taxonomies of elementary change operators that are sound and 
complete. Banerjee et al. (1987) chose the ORION object-oriented data 
model, devised a complete and sound taxonomy of possible change 
operators, and finally defined transformation rules (in terms of pre- and 
post-conditions) in order to effect change operators on data schemas and 
change propagation to the data. Lerner (2000) introduces models for 
different levels of granularity in change operators, viz. non-elementary or 
compound change operators.  

Also in ontology evolution literature, it has become common practice to 
derive a taxonomy of change operators in terms of a particularly chosen KR 
model. E.g., Heflin (2001) takes the definition of Guarino (1998) as basis for 
his model, while Klein et al. (2002) refer to the definition of Gruber (1993). 
Heflin’s model is formal, but his definition of an ontology (being a logical 
theory) is very much akin to the formal definition of a data schema as in De 
Troyer (1993). On the other hand, Klein et al. are more pragmatical in a way 
that they take Gruber’s definition quite literally, and infer that there are three 
parts of the ontology (i.e., the model) to consider: the specification, the 
shared conceptualisation and the domain, and infer different types of change 
respectively. Klein and Fensel (2001) exemplify this. 

Inspired by Lerner (2000), Stojanovic argues that change representation 
in terms of elementary operators is not always appropriate, and hence she 
defines a taxonomy of composite and complex change operators that are on a 
more coarse level than atomic change operators. Composite change 
operators are restricted to modify one level of neighbourhood of entities in 
the ontology. Examples are, given a concept taxonomy: “pull concept up,” 
“split concept,” etc. Complex change operators are combinations of at least 
two elementary and one composite change operator. 

 
Prioritisation: Multiple change requests may be pending, in which case 

one of the requests needs to be selected. This requires setting up a 
prioritisation scheme for mapping the change requests, in order to decide 
which change should be implemented first. Prioritisation of requests can be 
based on the role of the change requester; however this remains undefined 
when assuming only one single administrator. 

 
Change request types: Plessers (2006) distinguishes between changes 

on request and changes in response. He mainly concentrates on the changes 
on response that concern the process of changing an artefact as a 
consequence of changes to a sub-ontology it is depending on. A change on 
request is further divided by Stojanovic (2004) in top-down and bottom-up 
change requests.  
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Top-down change requests are explicit and are centrally driven by an 
entitled knowledge engineer who wants to adapt the ontology to the new 
requirements spawned by explicit user feedbacks. Bottom-up requests, on 
the other hand are implicit, reflected in the behaviour of the system, and can 
only be discovered through analysing this behaviour.  

These types of change requests correspond to the two typical methods for 
knowledge acquisition5. Top-down (deductive) changes are the result of 
knowledge elicitation techniques that are used to acquire knowledge directly 
from human domain experts. Bottom-up (inductive) changes correspond to 
machine learning6

 techniques, which use different methods to infer patterns 
from sets of examples.  

 
Change discovery: Stojanovic (2004) states that based on heuristics 

knowledge and/or data mining algorithms, suggestions for changes that 
refine the ontology structure may be induced by the analysis of the following 
data sources: (i) the ontology structure itself, (ii) the ontology instances or 
(iii) the information describing patterns of ontology usage. This results in 
three change discovery strategies. First, structure-driven changes are 
discovered from the ontology structure itself. Second, data-driven changes 
are induced from updates in the underlying instance sets and documents that 
are annotated with the ontology. Different definitions can be found in 
Stojanovic (2004) and Klein and Noy (2003). Finally, user-driven changes 
are discovered from certain usage patterns emerged over a period of time. 
Examples of such patterns include querying and browsing behaviour (Klein 
and Noy, 2003). 

3.2.2 Planning the change 

Planning the change has to do with understanding why the change needs 
to be made, where the change needs to be made (i.e., which parts of the 
artefact under consideration need to be modified), and whether the change 
should be made (i.e., do the benefits outweigh the risk, effort and cost 
induced by making the change). 

 
Impact analysis: A crucial activity in planning the change has to do with 

change impact analysis, which is “the process of identifying the potential 
consequences (side effects) of a change, and estimating what needs to be 

                                                      
5 Knowledge acquisition is a subfield of Artificial Intelligence (AI) concerned with  eliciting 

and representing knowledge of human experts so that it can later be used in some 
application 

6 Machine learning provides techniques for extracting knowledge (e.g., concepts and rules) 
from data 
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modified to accomplish a change” (Bohner and Arnold, 1996). This impact 
analysis is very helpful to estimate the cost and effort required to implement 
the requested change. 

A result of this activity may be to decide to implement the change, to 
defer the change request to a later time, or to ignore the change request 
altogether (for example, because its estimated impact and effort may be too 
high to afford).  

Ontologies often reuse and extend (parts of) other ontologies. Many 
different types of dependencies exist within and between ontological 
artefacts of various levels of granularity, ranging from individual concepts of 
definitions to full ontologies. Other dependent artefacts include instances, as 
well as application programs committing to the ontology. Hence, a change 
on request in one artefact might imply a cascade of changes in response to 
all its dependent artefacts (Plessers, 2006). A viable tool should generate and 
present the administrator with a complete list of all implications to the 
ontology and its dependent artefacts.  

 
Cost of evolution: Plessers (2006) determines the cost of evolution as a 

key element in the decision whether to propagate change to a dependent 
artefact or not. He does this by checking to which intermediate version7 the 
ontology can update without any cost, i.e., without any need for change 
propagation to the depending artefact. Simperl et al. (2007) propose a 
parametric cost estimation model for ontologies by identifying relevant cost 
drivers having a direct impact on the effort invested in ontology building. 
Finally, Hepp (2007) gives an excellent overview about how realistic factors 
constrain ontology benefits. 

Also in the software engineering community, a lot of research has been 
carried out in estimating the cost of software evolution (Sneed, 1995) 
(Ramil, 2003). Whether and how these results can be adapted to ontology 
engineering remains an open question. 

3.2.3 Implementing the change 

The activity of implementing the change seems to be self-explanatory, 
although it is more complicated than it looks. The application of a change 
request should have transactional properties, i.e., atomicity, consistency, 
isolation, and durability (Gray, 1981). Our process model realises these 

                                                      
7 Plessers (2006: pp. 53) uses the term ‘intermediate version’ to refer to: “one of the versions 

in the version log that together have lead to a publicly available version, but that never 
has been published as a public version on its own. An intermediate version is rather a 
version in-between towards a public version”. 



146 Chapter 5 
 
requirements by strictly separating the change request specification and 
subsequent implementation, as suggested by Stojanovic (2004). 

Implementing a change is a difficult process that necessitates many 
different sub-activities: change propagation, restructuring and inconsistency 
management.  

 
Change propagation: During the change planning phase, the impact of 

the change has been analysed, and it may turn out that a seemingly local 
change will propagate to many different types of dependent artefacts. Based 
on the cost and impact analysis, the administering knowledge engineer might 
consider to cancel the change or not. Techniques for dealing with this 
change propagation, such as the one proposed by Rajlich (1997), need to be 
put in place.  

In data schema evolution, the principal dependent artefacts are the 
instances representing the database population. In order to keep the instances 
meaningful, either the relevant instances must be coerced into the new 
definition of the schema or a new version of the schema must be created 
leaving the old version intact. In literature four main approaches have been 
identified (Peters and Özsu, 1997), which can be reconsidered for updating 
ontology instances as well: immediate conversion (or coercion) (Penney and 
Stein, 1987; Skarra and Zdonik, 1986; Nguyen and Rieu, 1989; Lerner and 
Habermann, 1990) and deferred conversion (lazy, screening) (Andany et al., 
1991; Ra and Rundensteiner, 1997) propagate changes to the instances only 
at different times. Third, explicit deletion allows for (i) the explicit deletion 
of all instances of all dependent component classes when the referencing 
class is dropped; and (ii) explicit deletion of all instances when their class is 
dropped (Banerjee et al., 1987). Four, filtering (Andany et al., 1991; Ra and 
Rundensteiner, 1997) is a solution for versioning that attempts to maintain 
the semantic differences between versions of schema. Other hybrid 
approaches take a combination of the above four methods.  

For propagating changes to dependent artefacts, Maedche et al. (2003) 
propose two strategies: push-based and pull-based synchronisation. Push-
based synchronisation is a variant of immediate conversion. With pull-based 
synchronisation, the changes are propagated at explicit request, which 
implies a deferred approach.  

 
Change logging: All information about the performed change operations 

are usually tracked and recorded in a change log. This facilitates change 
detection, merging and conflict management, as we will see further. 

 
Restructuring: In some cases the requested change may turn out to be 

too difficult to implement, given the current structure of the ontology. In that 
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case, the ontology needs to be restructured first, before the actual desired 
change can be implemented. According to Chikofsky and Cross (1990), 
restructuring is “the transformation from one representation form to another 
at the same relative abstraction level, while preserving the subject system’s 
external behaviour (functionality and semantics).” 

In conceptual schema modelling, a schema change can be formalised by a 
transformation that either enriches, reduces or preserves the information 
capacity (Miller, 1993). Information capacity is not a kind of quantitive 
measure crediting the quality of a schema. It is explicated as a “semantic” 
ordering between schemas. Hence, different notions of semantics and 
semantic equivalence were defined, such as mathematical and conceptual 
equivalence (Proper and Halpin, 1998). Proper and Halpin (1998) distinguish 
roughly three reasons to apply transformation: (i) to select an alternative 
conceptual schema which is regarded as a better representation of the 
domain, (ii) to enrich the schema with derivable parts creating diverse 
alternative views on the same conceptual schema as a part of the original 
schema, (iii) to optimise a finished conceptual schema before mapping it to a 
logical design. Schema equivalence in the relational model concerns 
normalisation using lossless decomposition transformations (Codd, 1972). 

 
Inconsistency management: Yet another problem is that the change 

may introduce inconsistencies in the ontology. Nuseibeh et al. (2000) state 
succinctly: 

“An inconsistency is any situation in which a set of descriptions does not 
obey some relationship that should hold between them. The relationship 
between descriptions can be expressed as a consistency rule against 
which the descriptions can be checked.” 

According to Spanoudakis and Zisman (2001), an inconsistency 
corresponds to  

“a state in which two or more overlapping elements of different software 
models make assertions about aspects of the system they describe which 
are not jointly satisfiable.” 

Obviously, this definition can be used for ontology models as well. 
In research literature, we can discern two schools of thought. Proponents 

of “consistency maintenance” try to keep the system under consideration 
consistent at all costs. This is typically a conservative approach, where 
certain changes are disallowed, as they would lead the system into an 
inconsistent state. The second school of thought, that we will refer to as 
“inconsistency management” is more liberal, since it relies on the hypothesis 
that inconsistencies are inevitable, and that we need to live with them. Either 
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way, we need to define and use formalisms and techniques for detecting and 
resolving inconsistencies in ontologies, as well as mechanisms and processes 
to manage and control these inconsistencies. 

In data schema evolution, most work is situated in consistency 
maintenance, where it is usually denoted as semantics of change. In ORION 
(Banerjee et al., 1987), the semantics for each schema change is determined. 
They first identify a set of invariant properties intrinsic to the object-oriented 
model, ensuring semantic integrity. The invariants strictly depend on the 
underlying model. Then for each schema change where there are 
theoretically multiple alternative ways to preserve the invariant properties, 
they define a set of transformation rules guiding the change process through 
the most meaningful way that preserves the semantic integrity of the schema. 
Similar approaches are found in Gemstone (Penney and Stein, 1987), 
Farandole2 (Andany et al., 1991), and OTGen (Lerner and Habermann, 
1990). In ontology evolution this work was adopted by Stojanovic (2004) 
and De Leenheer et al. (2007).  

A semantic approach was taken by Franconi et al. (2000). They adopt a 
description logic framework for a simplified object-oriented model (ignoring 
class behaviour), and extend it with versions. Each elementary schema 
change between two versions specifies how the axiomatisation of the new 
version will be in terms of the previous version, and refers to the evolution 
of the objects through the change. The only elementary change operator that 
can refer to a new object is “add class.” That is the reason that changing the 
domain type of an attribute with a new domain type that is compatible with 
the old one, leads to an inconsistent version. A legal instance of a schema 
should satisfy the constraints imposed by the class definitions in the initial 
schema version and by the schema changes between schema versions. 
Franconi et al. also propose a reasoning mechanism for investigating 
evolution consistency. Franconi’s approach is very similar to the declarative 
approach taken by Stojanovic (2004). Finally, Jarrar et al. (2006) describe 
algorithms for detecting unsatisfiability of ORM schemas. There, conflict 
patterns for detecting conflict between semantic constraints on the same pair 
of paths in the semantic network. 

A sound and complete axiomatic model for dynamic schema evolution in 
object-based systems is described in (Peters and Özsu, 1997). This is the first 
effort in developing a formal basis for the schema evolution research which 
provides a general approach to capture the behaviour of several different 
systems, and hence is useful for their comparison in a unified framework. 

In software engineering, there is a plethora of research on inconsistency 
management. Spanoudakis and Zisman (2001) provide an excellent survey 
of this research field. In the domain of ontology engineering, on the other 
hand, research on inconsistencies is still in its infancy. Haase and Stojanovic 
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(2005) present an approach to localise inconsistencies based on the notion of 
a minimal inconsistent sub-ontology. Plessers and De Troyer (2006) use a 
variant of description logics to detect and resolve certain kinds of 
inconsistencies in OWL ontologies. 

 
Evolution strategies: As already mentioned above, Banerjee et al. 

(1987) provide for each change multiple alternative ways to preserve the 
invariant properties. This idea was further adopted by Stojanovic et al. 
(2002). They introduce resolution points where the evolution process or the 
user has to determine one of a set of possible evolution strategies to follow. 
In order to relieve the engineer of choosing evolution strategies individually, 
four advanced evolution strategies are introduced. The choice of how a 
change should be resolved can depend on characteristics of the resulting 
ontology state (structure-driven); on characteristics of the change process 
itself, such as complexity (process-driven); on the last recently applied 
evolution strategy (frequency-driven); or on an explicitly given state of the 
instances to be achieved (instance-driven). Mens et al. (2006) also provide 
alternative strategies to resolve model inconsistencies. Furthermore, they 
exploit the mechanism of critical pair analysis to analyse dependencies and 
conflicts between inconsistencies and resolutions, to detect resolution cycles 
and to analyse the completeness of resolutions. 

3.2.4 Verification and validation 

The last, but certainly not the least important, activity in the change 
process has to do with verification and validation. Verification addresses the 
question “did we build the system right?”, whereas validation addresses the 
question “did we build the right system?” A wide scale of different 
techniques has been proposed to address these questions, including: testing, 
formal verification, debugging and quality assurance. 

Formal verification relies on formalisms such as state machines and 
temporal logics to derive useful properties of the system under study. Well-
known techniques for formal verification are model checking and theorem 
proving (Clarke et al., 2000). While formal verification can be very useful, it 
is a technique requiring considerable expertise, and it does not always scale 
very well in practice. Therefore, other more pragmatic approaches are 
needed as well. 

Testing is one of these approaches. For a well-chosen representative 
subset of the system under consideration, tests are written to verify whether 
the system behaves as expected. Whenever one of the tests fails, further 
actions are required. 
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Debugging is the task of localising and repairing errors (that may have 
been found during formal verification or testing). Some work on ontology 
debugging is starting to emerge, see Parsia et al. (2005) and Wang et al. 
(2005). 

A final activity has to do with quality assurance. The goal is to ensure 
that the developed system satisfies all desired qualities. This typically 
concerns non-functional qualities, since the behaviour of the system has 
already been verified during formal verification or testing. Examples of 
useful quality characteristics may be: reusability, adaptability, 
interoperability, and so on. Currently, efforts are being made for editing and 
publishing a concise list of ontology quality guidelines in the context of the 
Ontology Outreach Advisory8. 

3.3 Versioning 

In the case of ontology management, some of the activities in the process 
model above suggest additional versioning support. Versioning is a 
mechanism that allows users to keep track of all changes in a given system, 
and to undo changes by rolling back to any previous version. Furthermore, it 
can be used to keep track of the history of all changes made to the system. 

The most common variant of versioning is known as state-based 
versioning. At any given moment in time, the system under consideration is 
in a certain state, and any change made to the system will cause the system 
to go to a new state. Typically (but not always), this state is associated with a 
unique version number. A more sophisticated variant of versioning is known 
as change-based versioning. It treats changes as first-class entities, i.e., it 
stores information about the precise changes that were performed. A 
particular flavour of change-based versioning is operation-based versioning. 
It models changes as explicit operations (or transformations). These 
evolution operations can be arbitrarily complex, and typically correspond to 
the commands issued in the environment used to perform the changes. 

Explicit information about changes can be used to facilitate comparing 
and merging parallel versions. Compared to state-based versioning, change-
based versioning is more flexible. For example, it makes it easier to compute 
the difference between versions, or to implement a multiple undo/redo 
mechanism. For undo, it suffices to perform the last applied operations in the 
opposite direction, and for redo, we simply reapply the operations. 

In the context of database systems, Katz (1990) and Roddick (1993,1995) 
provide an excellent survey on schema versioning issues for CAD objects 
and data schemas respectively. Schema versioning allows to view all data 

                                                      
8 http://www. ontology-advisory.org 
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both retrospectively and prospectively, through user-definable version 
interfaces. A version is a reference that labels a quiet point in the definition 
of the schema, forced by the user:  

1. prospective use is the use of a data source conforming to a previous 
version of the schema, via a newer version of the schema — the new 
schema must be backwards compatible; 

2. retrospective use is the use of a data source conforming to a newer 
version of the schema, via a previous version of the schema — the new 
schema must be forwards compatible; 

where use can be either viewing or manipulating. Schema evolution, 
however, actually does not require this ability: essentially, change can be 
propagated by means of coercion, screening or filtering (see Sect. 3.2.3).  

Conradi and Westfechtel (1998) provided a similar, yet considerably 
more extensive survey on the use of versioning in software engineering. This 
also included so-called change-based version models, which were not treated 
by Roddick (1995).  

Klein et al. (2002) propose a system offering support for ontology 
versioning. It is a state-based approach to versioning. In contrast, Maedche 
et al. (2003) propose to use a change-based approach, which tracks and 
records all information about the performed changes, thus facilitating change 
detection, integration, and conflict management (see further). 

3.3.1 Version differences  

Noy and Musen (2002) propose PROMPTDiff, an algorithm to find 
differences between two versions of a particular ontology. The algorithm 
distinguishes between three kinds of mismatches of two versions of a frame: 
(i) unchanged (nothing has changed in the definition), (ii) isomorphic (the 
frames have slots, and facet values are images of each other but not 
identical), and (iii) changed (the frames have slots or facet values that are not 
images of each other). The algorithm is inspired by classical difference 
algorithms, such as diff, that are used to discover changes or differences 
between versions of a document (Hunt and McIllroy, 1976). 

PROMPTDiff only detects differences between two versions based on 
their structural difference. Therefore, Klein (2004) proposed several 
complementary alternatives (change logs, conceptual relations and 
transformation sets) that provide a richer semantic description of the changes 
that the original ontology has undergone. Research on semantic differencing 
in software engineering may also be relevant in this context (Jackson and 
Ladd, 1994). 
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3.3.2 Compatibility  

Backward compatibility was first mentioned by Heflin (2001). Its goal is 
to provide data accessibility between different versions of an ontology by 
means of binary mappings between ontological elements of the respective 
versions (Klein et al., 2002). We refer to Chapter 5, for an in-depth 
elaboration on such mapping languages. 

According to Plessers (2006), an ontology version is backward 
compatible with a previous version for a given depending artifact if the 
depending artifact remains consistent and a set of compatibility requirements 
hold. Compatibility requirements allow maintainers of depending artifacts to 
express which facts that could be inferred from the old version of an 
ontology must still be inferable from the new version. All compatibility 
requirements must be met for an ontology to be considered backward 
compatible for that specific depending artifact. The compatibility 
requirements are specified in terms of a Change Definition Language. 

4. COLLABORATIVE ONTOLOGY ENGINEERING 

The process model we presented above addresses the principal ontology 
management activities from a single administrator point of view. We have 
shown that for each of these activities a considerable amount of methods and 
techniques are available. The key challenge of this chapter, however, was to 
come up with a unified framework and process model for ontology evolution 
and change management that scales up ontology engineering to a 
collaborative and distributed setting.  

As an illustrative example of the additional complexity introduced by the 
distributed and collaborative nature of interorganisational ontology 
engineering, consider the scenario depicted in Figure 5-4. It describes the 
situation of two different organisations, each having their own particular 
organisational ontology (OO1 and OO2, respectively). Assume that these 
organisations have the same domain of interest, and they wish to share their 
common knowledge by agreeing upon a shared interorganisational ontology 
IOO. Evolution problems start to arise since these three ontologies OO1, OO2 
and IOO have to be maintained and kept synchronised while they can all be 
subject to changes. For example, Figure 5-4 shows what happens if version 1 
of OO1 is revised into a new version. This requires integrating, if necessary, 
these changes into a new version of IOO as well. As a result of updating the 
IOO, the changes will need to be propagated to OO2 in order to keep it 
synchronised. The situation becomes even more complex if OO1 and OO2 
are subject to parallel independent changes (indicated by the parallel 
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revisions of OO1 and OO2 to version 3 in Figure 5-4). As before, these 
parallel changes need to be integrated into the IOO, but since these changes 
come from different sources, it is likely that conflicts arise, and that a 
negotiation process is required to decide how to merge all changes into a 
new version of the IOO. 

 

Figure 5-4. An example of interorganisational ontologies. 

In this section, we will explore the above problem in detail, and discuss 
which additional mechanisms and activities are required to provide a 
solution. 

4.1 Collaborative change process model 

Collaboration aims at the accomplishment of shared objectives and an 
extensive coordination of activities (Sanderson, 1994). Successful virtual 
communities and communities of stakeholders are usually self-organising. 
The knowledge creation and sharing process is driven by implicit 
community goals such as mutual concerns and interests (Nonaka and 
Takeuchi, 1995). Hence, in order to better capture relevant knowledge in a 
community-goal-driven way, these community goals must be externalised 
appropriately. They may then be linked to relevant strategies underlying the 
collaborative ontology engineering process and its support.  

In a collaborative setting, we replace the single knowledge engineer by 
multiple knowledge workers, the latter being community members that have 
expertise about the domain in particular, rather than in knowledge 
engineering in general. Furthermore, we leverage the single user change 
process model to a community-goal-driven change process model, by 
embedding it in its real and “complex” environment or context (Figure 5-5), 
characterised as a system consisting of following two parts: 

1. A formal system part, being the Ontology Server storing actual shared 
networked structures of inter-dependent knowledge artefacts. In the 
single user change process model, we only considered this part and 
further assumed a context-independent environment. 
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2. A social system part, encompassing the community or organisation 

governing the shared knowledge. Ultimately, this requires us to model 
communities completely (i.e., establish their formal semantics) in terms 
of their intrinsic aspects such as goals, actors, roles, strategies, 
workflows, norms, and behaviour, and to so integrate the concept of 
community as first-class citizen in the knowledge structures of the 
evolving system. 

 

Figure 5-5. A community-goal-driven change process model, embedded in its real 
environment. 

This holistic approach is breaking with current practice, where evolution 
processes are usually reduced to only the non-human parts, with the possible 
exception of the field of organisational semiotics and the language/action 
perspective (e.g., RENESYS (de Moor and Weigand, 2007)) that already 
involved a few socio-technical aspects of communities such as norms and 
behaviour (e.g., MEASUR (Stamper, 1992)) in legitimate user-driven 
information system specification. 

These rapidly evolving community aspects, and the many dependencies 
they have with the actual knowledge artefacts in the knowledge structures, 
lead to knowledge structures that can be extremely volatile. Hence, research 
into a special-purpose, disciplined and comprehensive framework and 
methodology will be needed to address the manageable evolution of 
knowledge structures, taking into account crucial issues such as conflict and 
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dependency management, and ontology integration, while respecting the 
autonomous yet self-organising drives inherent in the community. 

Next, we give an overview of socio-technical aspects that currently 
bootstrap practice in context-driven ontology engineering.  

4.2 Socio-technical requirements  

When formulating a change request in a collaborative context, at least the 
following questions need to be considered: 

1. What ontology engineering processes are required in order to achieve 
the goal or resolve the communication breakdown? We already touched 
upon this in Section 2. As multiple knowledge workers will collaborate, 
we will need additional methods for integrating their divergent 
conceptualisations, including negotiation and argumentation. 

2. How to conduct the activities? This relates to the epistemological 
dimension of knowledge: it examines to which extent subjective tacit 
knowledge from multiple knowledge workers can be made explicit, and 
universally acceptable (read: objective) for the community. This 
ultimately requires alternative epistemological approaches to ontology 
elicitation. 

3. Who will be coordinating these activities? As already mentioned, shared 
objectives can only be achieved through extended coordination. E.g., 
through implicit and explicit norms, the authority for the control of the 
process is legitimately distributed among many different participants, 
independent of their geographical location. This requires specification 
methods for legitimate action. 

4.2.1 Epistemological approaches 

Knowledge Explication: During the ontology engineering process, the 
subjective knowledge held by the individual domain experts is amplified, 
internalised, and externalised as part of a shared ontology (Nonaka and 
Takeuchi, 1995). Knowledge moves in an upward spiral starting at the 
individual level, moving up to the organisational level, and finally up to the 
interorganisational level. This requires an alternative approach to ontology 
engineering. 

 
The radical constructivist approach: Constructivism rejects the 

existence of a unique objective reality, hence its reflecting “transcendent” 
conceptualisation. Analogously, in a collaborative setting, however, 
organisation members, including middle managers, users, and domain 
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experts play an important role in the interpretation and analysis of meaning 
during the different knowledge elicitation and application activities. 
Furthermore, it might be the case that multiple members turn out to be 
relevant to participate in one contextualised change process when it is related 
to a topic for which they all share the necessary expertise. Hence, given the 
diversity and the dynamics of knowledge domains that need to be 
accommodated, a viable ontology engineering methodology should not be 
based on a single, monolithic domain ontology that presumes a unique 
objective reality that is maintained by a single knowledge engineer. It should 
instead take a constructivist approach where it supports multiple domain 
experts in the gradual and continuous externalisation of their subjective 
realities contingent on relevant formal community aspects (De Leenheer et 
al., 2007). 

 
No free lunch: divergence meets convergence: The constructivist 

approach engenders meaning divergence in the respective organisational 
contexts. This requires a complex socio-technical meaning argumentation 
and negotiation process, where the meaning is aligned, or converged. Figure 
5-6 shows the effect of the constructivist approach on ontology engineering 
processes: an explosion of increasingly mature versions of contextualised 
ontological artefacts (conceptualising their divergent subject realities), and 
of their inter-dependencies.  

This confronts us with a seemingly unscalable alignment task. However, 
sometimes it is not necessary (or even possible) to achieve context-
independent ontological knowledge, as most ontologies used in practice 
assume a certain professional, social, and cultural perspective of some 
community (Diaz, 2005). The key is to reach the appropriate amount of 
consensus on relevant conceptual definitions through effective meaning 
negotiation in an efficient manner. This requires powerful strategies for 
selected integration, supported by argumentation and negotiation 
methodologies, while allowing for management of context dependencies. 

4.2.2 Modelling communities: coordination and negotiation 

By grounding evolution processes in terms of community aspects such as 
composition norms and conversation modes for specification, the 
knowledge-intensive system can be precisely tailored to the actual needs of 
the community (de Moor, 2002).  
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Figure 5-6. The middle-out approach applied when multiple knowledge workers are engaged 
in the change request. This requires additional support for integration, including 
argumantation and negotiation. 

Conversation: The RENISYS method conceptualises community 
information system specification processes as conversations for specification 
by relevant community members. It therefore uses formal composition 
norms to select the relevant community members who are to be involved in a 
particular conversation for specification. Next, it adopts a formal model of 
conversations for specification to determine the acceptable conversational 
moves that the selected members can make, as well as the status of their 
responsibilities and accomplishments at each point in time. 

 
Composition norms: Among other community aspects that will 

orchestrate the collaborative ontology engineering processes, in this paper 
we only distinguish between two kinds of composition norms: (i) external 
norms that authorise relevant actors in the community for an action within a 
particular ontological context, and (ii) internal norms that, independently 
from the involved actors, constrain or propagate the evolution steps, 
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enforced by the dependencies the involved ontological context has with 
other contexts in the knowledge structures.  

Inspired by Stamper and de Moor, an external norm is defined as follows: 

if precondition then actor is {permitted/required/obliged} to 
{initiate/execute/evaluate} action in ontological context 

The precondition can be a boolean, based on a green light given by an 
entitled decision organ, or triggered by some pattern that detects a trend or 
inconsistency in the actual ontological structures. The deontic status states 
whether an actor is permitted, obliged, or required to perform a particular 
role (initiation, execution, validation) within the scope of a certain action 
(e.g., a micro-level OE process or macro-level OE activity).  

An internal norm is defined as follows: 

{initiate/execute/evaluate} action in ontological_context is constrained 
to ∪i primitivei(e

1
i,…,en

i) where ∀i {ej
i,…,ek

i} ∈ ontological_contexti (1 
≤ j ≤ k ≤ n) 

Performing a particular action role in some ontological context is (in 
order to perform that action) constrained to use a restricted toolbox of 
primitives (∪i primitivei), of which some parameters are bound to 
ontological elements ej

i,…,ek
i, that were already grounded in some 

ontological contexts.  

4.3 Context dependency management 

We now present a generic model for understanding the inter-
organisational ontology engineering process, which collects the 
epistemological and legitimate assumptions we made above. It is an 
extension of the one inspired by de Moor et al. (2006) and Templich et al. 
(2005). The main focus lies on how to capture relevant commonalities and 
differences in meaning by supporting domain experts in an efficient way by 
assigning them scalable knowledge elicitation tasks driven by incentives 
such as templates that represent the current insights. Differences are aligned 
insofar necessary through meaning argumentation and negotiation. 

In the model, we make the following assumptions: 

1. An interorganisational ontology needs to be modelled not by external 
knowledge engineers, but constructively by domain experts themselves. 
Only they have the tacit knowledge about the domain and can sufficiently 
assess the real impact of the conceptualisations and derived collaborative 
services on their organisation.  
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2. An interorganisational ontology cannot be produced in one session, but 

needs to evolve over time. Due to its continuously changing needs, 
expectations, and opportunities, different versions are needed. 

3. The common interest only partially overlaps with the individual 
organisational interests. This means that the goal is not to produce a 
single common ontology, but to support organisations in interpreting 
common conceptualisations in their own terms, and feeding back these 
results. This requires continuous support for so-called co-evolution of 
ontologies. A continuous alignment of common and organisational 
ontologies is therefore required.  

4. The starting point for each version should be the current insight about the 
common interest, i.e., common conceptual definitions relevant for the 
collaborative services for which the interorganisational ontology is going 
to be used. 

5. The end result of each version should be a careful balance of this 
proposal for a common ontology with the various individual 
interpretations represented in the organisational ontologies. 

 

Figure 5-7. A model inter-organisational ontology engineering, inspired by de Moor et al. 
(2006). 

The inter-organisational ontology (IOO) model in Figure 5-7 and its 
assumptions suggests many different types of context dependencies, within 
and between ontological elements of various levels of granularity, ranging 
from individual concepts of definitions to full ontologies.  

Inter-organisational dependencies: The engineering process starts with 
the creation (or adoptation) of an (existing) upper common ontology (UCO), 
which contains the conceptualisations and semantic constraints that are 
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common to and accepted by a domain. For example, a domain glossary or 
thesaurus could frame all future OE activities in a top-down fashion. Each 
participating organisation contextualises (through e.g., specialisation) this 
ontology into its own Organisational Ontology (OO), thus resulting in a local 
interpretation of the commonly accepted knowledge. In the Lower Common 
Ontology (LCO), a new proposal for the next version of the IOO is 
produced, selecting and merging relevant material from the UCO and 
various OOs. The part of the LCO that is accepted by the community then 
forms the legitimate UCO for the next version of the IOO (dashed arrows, 
engendering the upward spiral). The performed context-driven ontology 
engineering processes characterise different dependency types between the 
sub-ontologies (full arrows). 

Intra-organisational dependencies: For each new concept or 
relationship within an organisational ontology, different OE activities are 
conducted accordingly. E.g., first a natural language label is chosen to refer 
to the concept, next it is disambiguated and hooked into the upper common 
type hierarchy, then it is applied in terms of relationships with other concepts 
(differentiae), and finally axioms constrain the possible interpretations of the 
genera and differentiae. Again, this results in many dependencies within the 
individual organisational ontologies that are characterised by ontology 
engineering processes. 

The formal characterisation of context dependency types in terms of 
applicable change operators depends on the adopted KR model, hence is 
omitted here. For a technical elaboration of this in the DOGMA KR model, 
we refer to (De Leenheer et al., 2007: pp. 40). For an elaborated example of 
context dependency management in a real-world business case, we refer the 
reader to Chapter 10. 

4.4 Argumentation and negotiation 

A negotiation process is defined as a specification conversation about a 
concept (e.g., a process model) between selected domain experts from the 
stakeholding organisations. For an excellent survey on different conversation 
models we refer to de Moor (2002). 

In order to substantiate their perspectives, domain experts must formulate 
arguments. The most accepted argumentation model is IBIS (Kunz, 1970), 
which provides a simple and abstract infrastructure for so-called wicked 
problems. Wicked problems are usually not solvable in a fashionable way as 
there are many social obstacles such as time, money, and people.  

By considering ontology negotiation as a wicked problem, Tempich et al. 
(2005), propose DILIGENT, which is an integrated formal argumentation 
model (based on IBIS) to support ontology alignment negotiations. This 
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ontology supports the process in several ways. In negotiations, it focuses the 
participants and helps to structure their arguments. In the usage and analysis 
phases, the exchanged arguments can be consulted to better understand the 
current version of the model. Moreover, it allows for inconsistency detection 
in argumentations. Since the ontology covers all aspects of the negotiation 
activity, namely issue raising, formalisation of the issues, and ultimately 
decision making, the participants are always informed about the current 
status of the negotiation and the ontology they are building. 

Another ontology engineering methodology that provides similar 
argumentation support is HCOME (Kotis et al., 2004). However, they 
emphasise on the distributed and human-centered character of ontology 
engineering and user interfaces.  

4.5 Integration 

An important activity in context-driven OE concerns ontology 
integration. This process has been studied extensively in the literature. For a 
state-of-the-art survey, see Euzenat et al. (2004), and Kalfoglou and 
Schorlemmer (2005). Although different groups vary in their exact 
definition, ontology integration is considered to consist of four key 
subactivities (adopting the terminology from Kalfoglou and Schorlemmer 
(2005)):  

1. Mapping and  
2. Alignment: Given a collection of multiple contextualisations, these 

often need to be put in context of each other, by means of mapping or 
aligning (overlapping) knowledge elements pairwise. 

3. Schema articulation: A collection of individual knowledge elements 
may need to be contextualised, by means of a consensual articulation 
schema of these (overlapping) elements. 

4. Merging: A collection of individual knowledge elements may need to 
be contextualised by means of a consensual merging of these 
(overlapping) elements9. Because merging is an essential activity, we 
will discuss it in detail here. For mapping and alignment we refer to 
Chapter 6. 

 
Merging is the activity of integrating changes that have been made in 

parallel to the same or related artefacts, in order to come to a new consistent 
system that accommodates these parallel changes. Merging is typically 

                                                      
9 An ontology merging process requires an established articulation schema, which is the result 

of a successful articulation process. However, in this chapter we do not work out such 
relations between contextualisations. 
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needed in a collaborative setting, where different persons can make changes 
simultaneously, often without even being aware of each other’s changes. An 
excellent survey of a wide variety of different techniques to software 
merging that have been proposed and used in software engineering can be 
found in Mens (2002). 

The kind of support that is required depends on the particular architecture 
that is provided. In a centralised architecture, each user possesses its own 
personal working copy that needs to be synchronised from time to time with 
a central repository. In other words, one ontology is considered to be the 
central one, and changes are always made to this central ontology and 
propagated to its depending ontologies. This approach to ontology change 
management has already gained considerable attention in the research 
community (Klein et al., 2002; Stojanovic, 2004). 
In a distributed architecture, such as the World Wide Web, it is unrealistic to 
assume that there is a central ontology. Instead, each ontology can be subject 
to changes, which need to be propagated to all depending ontologies. This 
problem becomes even more complex since such changes to ontologies may 
be made in parallel, in which case the need arise to merge these changes. 
Maedche et al. (2003) propose a framework for managing evolution of 
multiple distributed ontologies. This decentralised view is also the main 
focus of this chapter. 

Contemporary tools that support merging can be classified according to 
whether they support two-way or three-way merging. Two-way merging 
attempts to merge two versions of a system without relying on the common 
ancestor from which both versions originated. With three-way merging, the 
information in the common ancestor is also used during the integration 
process. This makes three-way merging more powerful than its two-way 
variant, in the sense that more conflicts can be detected. 

Yet another distinction can be made between state-based and change-
based merging. With state-based merging, only the information in the 
original version and/or its revisions is considered during the merge. In 
contrast, change-based merging additionally uses information about how the 
changes were performed. Compared to state-based merging, change-based 
merge approaches can improve detection of merge conflicts, and allow for 
better support to resolve these conflicts (Feather, 1989; Lippe and van 
Oosterom, 1992). The underlying idea is that we do not need to compare the 
parallel revisions entirely; it suffices to compare only the changes that have 
been applied to obtain each of the revisions (Edwards, 1997; Munson and 
Dewan, 1994). 
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5. CHALLENGES 

The key challenge of this chapter was to construct a single framework, 
based on these mechanisms, which can be tailored for the needs of a 
particular version environment. Therefore, we performed a comprehensive 
survey on all ontology evolution activities involved in both single user and 
collaborative ontology engineering. During our research, however, we have 
learned and shown that concerning the collaborative aspects, still much can 
be learned from other domains. This conclusion restrains us from claiming 
that we would have reached our goals. However, the results of our study did 
allow us to send a valuable message to the data and knowledge engineering 
community. Next, we reflect on some future challenges. 

5.1 Conflict management 

Meaning divergences are inevitable, and the technique of merging can be 
used to address and resolve their resulting conflicts. Based on the surveys of 
Conradi and Westfechtel (1998) and Mens (2002), it turns out that the 
change-based variant of merging is the most powerful. In combination with 
the idea of operation-based versioning, each revision between two 
consecutive versions is represented as a sequence of primitive change 
operations. Merge conflicts can thus be detected by pairwise comparison of 
these primitive operations that appear as part of the change sequences that 
need to be merged. Resolution of the conflicts can be achieved by modifying 
one or both change sequences (e.g., by adding or removing operations in the 
sequence) in such a way that the merge conflict no longer occurs. 

As it turns out, the theory of graph transformation (Ehrig et al. 1999) 
provides a generic formalism to reason about such merge conflicts. 
Westfechtel (1991) was arguably the first to explore these ideas to support 
merging of “software documents,” whose syntax could be expressed using a 
formal, tree-structured, language. In his dissertation, Tom Mens (1999, 
1999b) built further on these ideas to propose graph transformation as a 
domain-independent formalism for software merging. In this formalism, the 
notion of merge conflict corresponds to the formal notion of parallel 
dependence, and the mechanism of critical pair analysis can be used to detect 
merge conflicts. 

Given that the use of change-based versioning has already been 
suggested by Maedche et al. (2003) in the context of ontologies, and given 
that it is relatively straightforward to represent ontologies formally as a 
graph, the idea of graph transformation can also be applied to support 
evolution and merging of ontologies in a formal way. Some initial 
experiments that we have carried out in this direction indicate that this is 
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indeed feasible. The idea is that the ontological metaschema (defining the 
syntax of a well-formed ontology) is expressed as a so-called type graph, 
and that the change operations can be expressed formally as a (sequence of) 
graph transformation rules. A formal (yet automated) dependency analysis 
then allows us to identify and explore potential conflicts between these 
change operations. For more details on how this process works, we refer to 
(Mens et al., 2007), that details the approach in the context of software 
evolution. 

Mens et al. (2006) performed a formal and static analysis of mutual 
exclusion relationships and causal dependencies between different 
alternative resolutions for model inconsistencies that can be expressed in a 
graph-based way. This analysis can be exploited to further improve the 
conflict resolution process, for example by detecting possible cycles in the 
resolution process, by proposing a preferred order in which to apply certain 
resolution rules, and so on. 

5.2 Towards community-driven ontology evolution 

Research in ontology engineering has reached a certain level of maturity, 
considering the vast number of contemporary methods and tools for 
formalising and applying knowledge representation models found in main-
stream research. Several EU FP6 integrated projects10 and networks of 
excellence11 tested and validated these technologies in a wide variety of 
applications such as Semantic Web Services. However, there is still little 
understanding of, and technological support for, the methodological and 
evolutionary aspects of ontologies as resources. Yet these are crucial in 
distributed and collaborative settings such as the Semantic Web, where 
ontologies and their communities of use naturally and mutually co-evolve. 
For managing the evolution of domain vocabularies and axioms by one 
single dedicated user (or a small group under common authority), established 
techniques from data schema evolution have been successfully adopted, and 
consensus on a generic ontology evolution process model has begun to 
emerge. Much less explored, however, is the problem of operational 
evolution of inter-organisational or community-shared, yet autonomously 
maintained ontologies. 

There are many additional complexities that should be considered. As 
investigated in FP6 integrated projects on collaborative networked 
organisations12, the different professional, social, and cultural backgrounds 
among communities and organisations can lead to misconceptions, leading 

                                                      
10 e.g., http://www.sekt-project.com, http://dip.semanticweb.org 
11 e.g., http://knowledgeweb.semanticweb.org 
12 e.g., http://ecolead.vtt.fi/ 
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to frustrating and costly ambiguities and misunderstandings if not aligned 
properly. This is especially the case in inter-organisational settings, where 
there may be many pre-existing organisational sub-ontologies, inflexible 
data schemas interfacing to legacy data, and ill-defined, rapidly evolving 
collaborative requirements. Furthermore, participating stakeholders usually 
have strong individual interests, inherent business rules, and entrenched 
work practices. These may be tacit, or externalised in workflows that are 
strongly interdependent, hence further complicate the conceptual alignment. 
Finally, one should not merely focus on the practice of creating ontologies in 
a project-like context, but view it as a continuous process that is integrated in 
the operational processes of the community. The shared background of 
communication partners is continuously negotiated as are the characteristics 
or values of the concepts that are agreed upon. 

Modelling of communities: Successful virtual communities and 
communities of stakeholders are usually self-organising. The knowledge 
creation and sharing process is driven by implicit community goals such as 
mutual concerns and interests. Hence, in order to better capture relevant 
knowledge in a community-goal-driven way, these community goals must be 
externalised appropriately. They may then be linked to relevant strategies 
underlying the collaborative ontology engineering process and its support. 
This requires us to model communities completely (i.e., establish their 
formal semantics) in terms of their intrinsic aspects such as goals, actors, 
roles, strategies, workflows, norms, and behaviour, and to so integrate the 
concept of community as first-class citizen in the knowledge structures of 
the evolving system. This holistic approach is breaking with current practice, 
where systems are usually reduced to only the non-human parts, with the 
possible exception of the field of organisational semiotics that already 
involved a few socio-technical aspects of communities such as norms and 
behaviour in information system specification. 

These rapidly evolving community aspects, and the many dependencies 
they have with the actual knowledge artefacts in the knowledge structures, 
lead to knowledge structures that can be extremely volatile. Hence, research 
into a special-purpose, disciplined and comprehensive framework will be 
needed to address the manageable evolution of knowledge structures, taking 
into account crucial issues such as versioning, dependency management, 
consistency maintenance, impact analysis, change propagation, trend 
detection and traceability while respecting the autonomous yet self-
organising drives inherent in the community. 

Knowledge divergence: Given the diversity of knowledge domains that 
need to be accommodated, a viable ontology engineering methodology 
should not be based on a single, monolithic domain ontology maintained by 
a single knowledge engineer, but should instead support multiple domain 
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experts in the gradual and continuous building and managing of increasingly 
mature versions of ontological artefacts, and of their diverging and 
converging interrelationships. Contexts are necessary to formalise and 
reason about the structure, interdependencies, and evolution of these 
ontologies, thus keeping their complexity manageable. As already 
mentioned, the socio-technical aspects of the ontology engineering process 
in complex and dynamic realistic settings are still poorly understood, and 
introduce new problems in ontology evolution that where so far not 
described and studied in an integrated fashion. A conceptualisation and 
unification of the socio-technical aspects of the involved communities, such 
as the community goals, should drive the continuous evolution (divergence 
and convergence) of knowledge structures. 

Community-grounded negotiation: For defining valuable knowledge 
structures, a complex socio-technical process of ontology alignment and 
meaning negotiation is required. Furthermore, sometimes it is not necessary 
(or even possible) to achieve context-independent ontological knowledge, as 
most ontologies used in practice assume a certain professional, social, and 
cultural perspective of some community.  

It is especially interesting to contrast the meaning negotiations with 
ontology-based business negotiations. Such negotiations enable the 
negotiators to set an agenda that can be dynamically adapted and to define 
and clarify terms that are used and concepts of a negotiation ontology used 
in the negotiation messages and the resulting business contract. Meaning is 
thus also defined but has a more economically-oriented character.  

Human-computer confluence: In general, dynamic communities require 
tools and systems for interaction and exchange. On the one hand, computer-
supported cooperative work (CSCW) aims at supporting groups in their 
cooperation and collaboration. On the other hand, the ontology engineering 
within communities requires a different type of system support. Both types 
need to be integrated into a holistic knowledge-intensive system, of which 
humans are part, to be both useful for and useable by such dynamic 
communities. 

Humans play an important role in the interpretation and analysis of 
meaning during the elicitation and application of knowledge. Consider for 
example the crucial process of externalising subjective tacit knowledge into 
formal knowledge artefacts, or the iterative incremental process of 
inconsistency resolution through negotiation. Instead of being frustrated by 
out-of-control evolution processes, adequate management support for co-
evolving (inter-dependent) knowledge structures with their communities of 
use will allow human experts to focus on these much more interesting 
“community-grounded” processes of realising the appropriate amount of 
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consensus on relevant conceptual definitions through effective meaning 
negotiation in an efficient manner. 

Clearly, many of these processes are intrinsically interactive in nature 
and require a lot of human intervention. This does not mean, however, that 
we should rule out other approaches that are fully automated. A careful 
balance and communication is needed between human, semi-automatic (i.e. 
requiring human interaction) and automatic approaches for knowledge 
interpretation and analysis processes. Ultimately, communities will consist 
of a mix of human and software agents that transparently will communicate 
and request services from each other in order to maintain the shared 
knowledge structures appropriately. 

Impact analysis: Moving this process and its associated knowledge 
forward into real-time co-evolving, in order to respond to the continuously 
shifting collaboration requirements, is an additional hard problem. This 
requires us to be able to analyse the impact the changes will have on the 
actual situation governed by inherent business rules and entrenched work 
practices. 

6. SOFTWARE AND TOOLS 

Although a plethora of ontology engineering tools are available, most of 
them still lack full support for all activities in the single user ontology 
evolution process model from Sect 2.2. In this section we give a short 
overview of state-of-the-art ontology evolution tools. For these tools, we 
also explore their support for collaborative development. 

6.1 Protégé tool suite  

Protégé is a free, open source ontology editor and knowledge-base 
framework. It supports two main ways of modelling ontologies via the 
Protégé-Frames (based on OKBC (Chaudhri et al., 1998)) and Protégé-OWL 
editors. Furthermore, Protégé ontologies can be exported into a variety of 
formats including RDF(S), OWL, and XML Schema. The implementation is 
based on Java, and provides a plug-and-play environment that makes it a 
flexible base for rapid prototyping and application development. Plessers 
(2006) provides plug-ins supporting versioning, change detection and 
inconsistency checking. Diaz (2005) developed a plugin that supports 
evolution activities in a collaborative setting. 
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6.2 KAON 

The KAON13 tool suite is a workbench integrating different tools for 
different ontology engineering activities. It uses the Ontology Instance KR 
model, or OI-model. The evolution facilities in KAON are basically the 
implementation of the work proposed in (Stojanovic, 2004) and (Maedche et 
al., 2003), including following features: 

• Change representation, including complex and compound change 
operators. 

• Configurable evolution strategies: Users are allowed to set up 
preferences for ontology evolution strategies. When the user requests a 
change, the tool presents details to the user for approval. The change 
request could generate a cascade of changes based on the defined 
evolution strategies in order to maintain the consistency of the ontology. 
The KAON API also computes sequences of additional changes when it 
is necessary to maintain the consistency of an ontology after performing 
a modification. It also provides the necessary interfaces to provide 
access to this functionality from external applications (Gabel et al., 
2004). 

• Dependent ontology evolution is intended to support distributed 
ontology engineering, where ontology reuse through extension is 
motivated, which results in many dependencies that lead to significant 
changes to all dependent artefacts.  

 
Currently, KAON does not support versioning identification and storage. 

It also does not provide facilities to assure backward compatibility. 

6.3 WSMO Studio 

WSMO Studio is Semantic Web Service modelling environment for the 
Web Service Modeling Ontology (Roman et al., 2005). It includes the 
Ontology Management Suite14 which supports the management of Web 
Services Modeling Language (WSML) ontologies (de Bruijn et al., 2006). 
The featured single user WSML ontology versioning tool (De Leenheer et 
al., 2006) has the following features: 

• Ontology versioning API: This API allows the user to start a new 
version of an ontology, to go back to the previous version, and to 
commit (finalise) a version. Further, the user of this API has full control 

                                                      
13 http://kaon.semanticweb.org/ 
14 http://www.omwg.org/tools/dip/oms/ 



5. Ontology Evolution 169
 

over the version identifier of a committed version. Versions are 
persistently stored in triple stores15, the latter for which the interface is 
facilitated through the ORDI (Kiryakov et al., 2002) repository 
middleware. 

• Formulating change requests: In order to enable Semantic Web 
Services in performing their goals, requests for defining new semantics 
can be published. This is supported by an on-line auditing and reporting 
tool. 

• Version identification and metadata: The API contains interfaces and 
classes for versioned WSMO API identifiers, and for version metadata 
containing version comment, date of creation, etc.  

• Version change log functionality: During the creation of a new 
version, the significant changes are logged and when a version is 
committed, this change log is available to the application. 

• Partial version mapping: From the change log a partial mapping is 
generated for mediation between the old and the new version. This 
partial mapping is an input to a human designer who can complete it as 
appropriate. 

• Alternative evolution strategies: A wizard guides the user through 
resolving the impact of changes like concept removal, whose instances 
and subconcepts can be handled in different ways depending on the 
intent of the change. 

6.4 DOGMA Studio 

DOGMA16 Studio is the tool suite behind the DOGMA ontology 
engineering approach (Spyns et al., 2002, De Leenheer et al., 2007). It 
contains both a Workbench and a Server. The Workbench is constructed 
according to the plug-in architecture in Eclipse. There, plug-ins, being 
loosely coupled ontology viewing, querying or editing modules support the 
different ontology engineering activities and new plug-ins continuously 
emerge. This loose coupling allows any arbitrary knowledge engineering 
community to support its own ontology engineering method in DOGMA 
Studio by combining these plug-ins arbitrarily. Such a meaningful 
combination of view/edit/query plug-ins is called a “perspective” in Eclipse. 
The DOGMA Server is an advanced J2EE application running in a JBoss 
server which efficiently stores Lexons and Commitments in a PostgreSQL 
Database. DOGMA Studio is complemented by a community layer in which 
the DOGMA collaborative ontology engineering processes are grounded in 

                                                      
15 triple stores are databases for (meta-)data that are expressed in triples characterised by three 

elements, viz. object, property, subject 
16 http://starlab.vub.ac.be/website/dogmastudio 



170 Chapter 5 
 
communities of use. This layer is implemented by the DOGMA-MESS17 
methodology and system. For an in-depth elaboration on DOGMA studio 
and -MESS in the context of a business use case, we refer to Chapter 12.  

ADDITIONAL READING 

Model driven architecture and ontology development: Defining a 
formal domain ontology is generally considered a useful, not to say 
necessary step in almost every software project. This is because software 
deals with ideas rather than with self-evident physical artefacts. However, 
this development step is hardly ever done, as ontologies rely on well-defined 
and semantically powerful AI concepts such as description logics or rule-
based systems, and most software engineers are largely unfamiliar with 
these. Gaševic et al. (2006) tries to fill this gap by covering the subject of 
MDA application for ontology development on the Semantic Web. 

Software evolution: As repeatedly mentioned in this chapter, ontology 
evolution has many relationships and overlaps with software evolution 
research. Madhavji et al. (2006) explore what software evolution is and why 
it is inevitable. They address the phenomenological and technological 
underpinnings of software evolution, and it explain the role of feedback in 
software maintenance. Mens and Demeyer (2007) present the state-of-the-art 
and emerging topics in software evolution research. 
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Abstract:  Relating ontologies is very important for many ontology-based applications 
and more important in open environments like the Semantic Web. The 
relations between ontology entities can be obtained by ontology matching and 
represented as alignments. Hence, alignments must be taken into account in 
ontology management. This chapter establishes the requirements for alignment 
management. After a brief introduction to matching and alignments, we justify 
the consideration of alignments as independent entities and provide the 
lifecycle of alignments. We describe the important functions of editing, 
managing and exploiting alignments and illustrate them with existing 
components. 

Key words: alignment management; alignment server; mapping; ontology alignment; 
ontology matching; ontology mediation 

1. RELATING ONTOLOGIES: FROM ONTOLOGY 
ISLANDS TO CONTINENT 

In many applications, ontologies are not used in isolation. This can be 
because several ontologies, representing different domains have to be used 
within the same application, e.g., an ontology of books with an ontology of 
shipping for an on-line bookstore, or because different ontologies are 
encountered dynamically, e.g., different ontologies from different on-line 
bookstores to choose from. 

These ontologies must be related together for the ontology-based 
application to work properly. In the context of ontology management, these 
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relations may be used for composing at design time the different ontology 
parts that will be used by the applications (either by merging these 
ontologies or by designing data integration mechanisms), for dealing with 
different versions of ontologies that may be found together at design time, or 
for anticipating the need for dynamically matching encountered ontologies at 
run time. 

We call “ontology matching” the process of finding the relations between 
ontologies and we call alignment the result of this process expressing 
declaratively these relations. 

In an open world in which ontologies evolve, managing ontologies 
requires using alignments for expressing the relations between ontologies. 
We have defended elsewhere the idea that for that purpose the use of 
alignments is preferable to using directly mediators or transformations 
(Euzenat, 2005). We go one step further here by proposing that ontology 
management involves alignment management. 

In the remainder we first briefly present what ontology matching is and 
where it is used (Section 2). Then, we consider some requirements and 
functions for alignment management addressing the alignment lifecycle 
(Section 3). Following this lifecycle we present in more details how to 
address these requirements in what concerns alignment editing (Section 4), 
alignment storing and sharing (Section 5) and finally alignment processing 
(Section 6). We then consider existing systems that feature to some extent 
ontology management capabilities (Section 7). 

2. ONTOLOGY MATCHING AND ALIGNMENTS 

We present in deeper details what is meant by an alignment and provide 
some vocabulary as it will be used in this chapter (Section 2.1). Then we 
discuss the different applications that can take advantage of matching 
ontologies (Section 2.2). We identify some characteristics of these 
applications in terms of exploitation of the alignments. Finally, we provide 
an overview of the various matching techniques available (Section 2.3). 
Complete coverage of these issues can be found in (Euzenat and 
Shvaiko, 2007). 

When we talk about ontologies, we include database schemas and other 
extensional descriptions of data which benefit from matching as well. 

2.1 Alignments for expressing relations 

The ontology matching problem may be described in one sentence: given 
two ontologies each describing a set of discrete entities (which can be 
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classes, properties, rules, predicates, or even formulas), find the 
correspondences, e.g., equivalence or subsumption, holding between these 
entities. This set of correspondences is called an alignment. 

Given two ontologies o and o', alignments are made of a set of 
correspondences (called mappings when the relation is oriented) between 
(simple or complex) entities belonging to o and o' respectively. A 
correspondence is described as a quadruple <e, e', r, n> such that: 

• e and e' are the entities, e.g., formulas, terms, classes, individuals, 
between which a relation is asserted by the correspondence.  

• r is the relation declared to hold between e and e' by the correspondence. 
This relation can be a simple set-theoretic relation (applied to entities 
seen as sets or their interpretation seen as sets), a fuzzy relation, a 
probabilistic distribution over a complete set of relations, a similarity 
measure, etc. 

• n is a degree of confidence associated with that correspondence (this 
degree does not refer to the relation r, it is rather a measure of the trust 
in the fact that the correspondence is appropriate — “I trust 70% the fact 
that the correspondence is correct, reliable, etc.” — and can be compared 
with the certainty measures provided by meteorological agencies). The 
trust degree can be computed in many ways, including user feedback or 
log analysis. 

So, the simplest kind of correspondence (level 0) is: 

URI1 = URI2 

while a more elaborate one could be: 

employee(x,y,z) <=.85 empno(x,w) & name3(w,concat(y,' ',z)) 

The first one expresses the equivalence (=) of what is denoted by two 
URIs (with full confidence). These URI can be the denotations of classes, 
properties or instances. The second one is a Horn-clause expressing that if 
there exists a w such that empno(x,w) — w’s identifier is x — and 
name(w,concat(y,' ',z)) — the name of w is the result of the concatenation of 
string y, ' ' and z — are true in one ontology then employee(x,y,z) must be 
true in the other one (and the confidence is here quantified with a degree 
equal to .85). Of course, in this last example, functions and predicates can 
also be identified by URIs. 
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As can be observed from these two examples, alignments in themselves 
are not tied to a particular language. But in order to use complex alignments 
like the second one, systems must be able to understand the language in 
which formulas and relations are expressed. This is supported through the 
definition of a particular subtype of alignment. 

Since everyone does not share the same terminology, we define below, 
according to (Euzenat and Shvaiko, 2007), the various terms used in this 
chapter: 

• alignment is the result of the matching task: it is a set of 
correspondences; 

• bridge axioms are formulas in an ontology language that expresses the 
relations as assertions on the related entities. They are used when 
merging ontologies. 

• correspondence is the relation holding (or supposed to hold according 
to a particular matching algorithm or individual) between two entities of 
different ontologies. These entities can be as different as classes, 
individuals, properties or formulas. Some authors use the term 
“mapping” or “mapping rule” that will not be used here; 

• matching is the task of comparing two ontologies and finding the 
relationships between them; 

• mediator a mediator is a software module (Wiederhold, 1992), 
providing interoperability between heterogeneous knowledge sources. In 
query application it is a dual pair of translations that transforms the 
query from one ontology to another and that translate the answer back. 

• merging ontologies consists of creating a new ontology out of two or 
more ontologies. Ontology merging first involves the definition of an 
alignment between the ontologies to be merged. 

• transformation is a program that transforms an ontology from one 
ontology expression language to another; 

• translation is a program that transforms formulas with regard to some 
ontology into formulas with regard to another ontology (translation can 
be implemented by a set of translation rules, an XSLT stylesheet or a 
more classical program). 

2.2 Applications 

Several classes of applications can be considered (they are more 
extensively described in (Euzenat and Shvaiko, 2007), we only summarize 
them here). They are the following: 

                                                      
1 http://www.foaf-project.org 
2 http://www.w3.org/TR/vcard-rdf 
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• Ontology evolution uses matching for finding the changes that have 

occurred between two ontology versions. See Chapter 5 of this book.  
• Schema integration uses matching for integrating the schemas of 

different databases under a single view; 
• Catalog integration uses matching for offering an integrated access to 

on-line catalogs; 
• Data integration uses matching for integrating the content of different 

databases under a single database; 
• P2P information sharing uses matching for finding the relations 

between ontologies used by different peers; 
• Web service composition uses matching between ontologies describing 

service interfaces in order to compose Web services by connecting their 
interfaces; 

• Multiagent communication uses matching for finding the relations 
between the ontologies used by two agents and translating the messages 
they exchange; 

• Context matching in ambient computing uses matching of application 
needs and context information when applications and devices have been 
developed independently and use different ontologies; 

• Query answering uses ontology matching for translating user queries 
about the Web; 

• Semantic Web browsing uses matching for dynamically (while 
browsing) annotating Web pages with partially overlapping ontologies. 

It is clear, from the above examples, that matching ontologies is a major 
issue in ontology related activities. It is not circumscribed to one area of 
ontology, but applies to any application that communicates through 
ontologies. 

These kinds of applications have been analysed in order to establish their 
requirements with regard to matching systems. The most important 
requirements concern: 

• the type of available input a matching system can rely on, such as 
schema or instance information. There are cases when data instances are 
not available, for instance due to security reasons or when there are no 
instances given beforehand. Therefore, these applications require only a 
matching solution able to work without instances (here schema-based 
method).  

• some specific behaviour of matching, such as requirements of (i) being 
automatic, i.e., not relying on user feed-back; (ii) being correct, i.e., not 
delivering incorrect matches; (iii) being complete, i.e., delivering all the 
matches; and (iv) being performed at run time. 
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• the use of the matching result as described above. In particular, how the 

identified alignment is going to be processed, e.g., by merging the data 
or conceptual models under consideration or by translating data 
instances among them. 

In particular, there is an important difference between applications that 
need alignments at design time and those that need alignments at run time. 

Ontology evolution is typically used at design time for transforming an 
existing ontology which may have instances available. It requires an 
accurate, i.e., correct and complete, matching, but can be performed with the 
help of users. Schema, catalogue and data integration are also performed off-
line but can be used for different purposes: translating data from one 
repository to another, merging two databases or generating a mediator that 
will be used for answering queries. They also will be supervised by a human 
user and can provide instances. 

Other applications are rather performed at run time. Some of these, like 
P2P information sharing, query answering and Semantic Web browsing are 
achieved in presence of users who can support the process. They are also 
less demanding in terms of correctness and completeness because the user 
will directly sort out the results. On the other hand, Web service 
composition, multiagent communication and context matching in ambient 
computing require matching to be performed automatically without 
assistance of a human being. Since, the systems will use the result of 
matching for performing some action (mediating or translating data) which 
will be feed in other processes, correctness is required. Moreover, usually 
these applications do not have instance data available. 

The difference between design time and run time is very relevant to 
ontology management. On the one hand, if alignments are required at design 
time, then ontology developers will need support in creating, manipulating 
and using these alignments. They should be supported in manipulating 
alignments during the whole ontology lifecycle (see Chapter 3 of this book). 

On the other hand, if alignments are required at run time, then one way of 
ensuring timely and adequate response may be to find some existing 
alignment in an alignment store. Alignments stored there should be carefully 
evaluated and certified alignments. They thus require alignment management 
on their own. 

2.3 Matching ontologies 

The matching operation determines the alignment A' for a pair of 
ontologies o and o'. There are some other parameters that can extend the 
definition of the matching process, namely:  
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1. the use of an input alignment A, which is to be completed by the process;  
2. the matching parameters, p, e.g., weights, thresholds; and  
3. external resources used by the matching process, r, e.g., common 

knowledge or domain specific thesauri. 

So, the matching process can be seen as a function f which, from a pair of 
ontologies o and o', an input alignment A, a set of parameters p and a set of 
resources r, returns an alignment A' between these ontologies:  

A' = f(o, o', A, p, r) 

There have already been many reviews of ontology matching algorithms 
(Rahm and Bernstein, 2001; Wache et al., 2001; Kalfoglou and 
Schorlemmer, 2003, Euzenat and Shvaiko, 2007)3 so we will be brief and 
refer the reader to these presentations. 

 

Figure 6-1. The ontology matching process: it establishes an alignment (A) from two 
ontologies (o and o') and optionally an input alignment (A'), parameters and external 
resources. 

Ontology matching consists of generating an alignment from two (or 
more) ontologies. There are many different features of ontologies that are 
usually used for providing matching: 

• terminological techniques are based on the text found within ontologies 
for identifying ontology entities (labels), documenting them (comments) 
or other surrounding textual sources (related element labels). These 
techniques come from natural language processing and information 
retrieval. They can use the string structure themselves, e.g., string 
distances, the ontology as corpus, e.g., statistical measures based on the 

                                                      
3 In fact, the ontology matching builds on previous research done in databases and 

information integration. 
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frequency of occurrence of a term, or external resources, such as 
dictionaries. 

• structural techniques are based on the relations between ontology 
entities. These can be relations between entities and their attributes, 
including constraints on their values, or relations with other entities. 
These techniques take advantage of type comparison techniques or more 
elaborate graph techniques, e.g., tree distances, path matching, graph 
matching. 

• extensional techniques compare the extension of entities. These 
extensions can be made of other entities, e.g., instances, as well as 
related resources, e.g., indexed documents. They differ depending on if 
the two ontologies share resources, e.g., they index the same set of 
documents, or not (in which case a similarity between the extensions 
may be established). These techniques can come from data analysis and 
statistics. 

• semantic techniques are based on the semantic definition of ontologies. 
They use extra formalised knowledge and theorem provers for finding 
consequences of a particular alignment. This can be used for expanding 
the alignment or, on the contrary, for detecting conflicting 
correspondences. 

Of course, most of the systems combine several techniques in order to 
improve their results. The techniques can be combined by aggregating 
distance results (Van Hage, 2005), by using selection functions for choosing 
which one to use in the present case (Jian et al., 2005; Tang et al., 2006), or 
by deeply involving them all in global distance computation (Euzenat and 
Valtchev, 2004, Melnik et al., 2002). 

Moreover, there is a difference when training sets are available or not 
(this is most often useful when a matching algorithm is needed for 
recognising instances). When available, one can apply machine learning 
techniques such as Bayes learning, vector support machines or decision 
trees. 

As a conclusion, many applications need ontology matching for many 
different purposes. Ontology matching can, in turn, be obtained by many 
different techniques that can be combined in many different ways. Currently, 
matching systems are not usable automatically on real scale ontologies. 
Their results loss in accuracy as the ontologies gain in size, complexity and 
heterogeneity. They are usable in particular contexts such as databases for 
which common identifiable data exists or evolutionary versions of 
ontologies. Consequently, matching systems are currently used interactively 
or semi-automatically so that users control and improve the quality of the 
result. In this context, the help of matching algorithms is as powerful as the 
ontologies grow in size and complexity. 
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Current scale of using such systems is not known otherwise than from 
their providers. However, some commercial systems are available, especially 
in the area of database and directory integration showing serious interest. A 
good way to approach the performances of matching algorithms is to follow 
the yearly Ontology Alignment Evaluation Initiative campaigns4. 

This difficulty of obtaining usable alignments calls for proper alignment 
management beside ontology management. We consider this in the next 
section. 

3. TOWARDS ALIGNMENT MANAGEMENT 

We first identify why alignments should be considered in isolation 
(Section 3.1). We then present what should be an alignment lifecycle from 
the standpoint of ontology management (Section 3.2) and elicit the 
requirements for supporting this lifecycle (Section 3.3). Finally we describe 
a set of services and tools that can be provided for fulfilling these 
requirements (Section 3.4). The further sections will present in more details 
possible implementations of these services. 

3.1 Why supporting alignments? 

The reasons for supporting alignments have been provided in Section 2: 
many applications use them for different purposes using various matching 
algorithms combined in multiple ways. 

As heterogeneous ontologies are a global problem for many applications, 
this calls for an infrastructure able to help these different applications to deal 
with it. In such a way, the effort of interoperating ontologies does not need 
to be solved for each kind of use. 

Moreover, given the difficulty of the matching task, there are few 
algorithms available and when good alignments are available, they are worth 
sharing. 

Supporting alignments has notable advantages over supporting other kind 
of matching results such as transformations, mediator implementations or 
merged ontologies. There are several reasons for this: 

• Sharing matching algorithms: Many different applications have 
matching needs. It is thus appropriate to share the solutions to these 
problems, the matching algorithms and systems, across applications. 

                                                      
4 http://oaei.ontologymatching.org 
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• Sharing alignments: Alignments are quite difficult to provide. There is 

no magic algorithm for quickly providing a useful alignment. Once high 
quality alignments have been established — either automatically or 
manually — it is very important to be able to store, share and reuse them. 

• Sharing exploitation means: Matching results, once expressed as 
alignments, may be used for different purposes. Hence, a good matching 
algorithm does not have to be reimplemented for merging ontologies or 
for transforming new data: the same implementation will be reused 
together with mediator generators for exploiting the alignment in 
different mediation scenarios.  

• Combining matchers: If one wants to combine several matching 
systems in a particular application, this is easier if all the systems can 
exchange their results in a pivot language. This is illustrated in Figure 6-
2. 

 

Figure 6-2. Alignment passing from tools to tools. Two matchers (m and m') are first run in 
parallel from the given ontologies, their resulting alignments are aggregated (a) resulting in 
another alignment which will be improved by another method (m'') before generating (g) a 
transformation program from it. 

So, considering ontology alignments as first class citizens, has several 
benefits: 

• from a software engineering point of view, as alignments can be passed 
from a program to another.  

• from an ontology engineering and management point of view, as they 
will evolve together with the ontology lifecycle. 

3.2 The alignment lifecycle 

Like ontologies, alignments have their own lifecycle (see Figure 6-3). 
They are first created through a matching process (which may be manual). 
Then they can go through an iterative loop of evaluation and enhancement. 
Again, evaluation can be performed either manually or automatically, it 
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consists of assessing properties of the obtained alignment. Enhancement can 
be obtained either through manual change of the alignment or application of 
refinement procedures, e.g., selecting some correspondences by applying 
thresholds. When an alignment is deemed worth publishing, then it can be 
stored and communicated to other parties interested in such an alignment. 
Finally, the alignment is transformed into another form or interpreted for 
performing actions like mediation or merging. 

 

Figure 6-3. The ontology alignment lifecycle. 

To this first independent cycle is added the joint lifecycle that can tie 
ontologies and alignments. As soon as ontologies evolve, new alignments 
have to be produced for following this evolution. This can be achieved by 
recording the changes made to ontologies and transforming these changes 
into an alignment (from one ontology version to the next one). This can be 
used for computing new alignments that will update the previous ones. In 
this case, previously existing alignments can be replaced by the composition 
of themselves with the ontology update alignment (see Figure 6-4). 

 

Figure 6-4 Evolution of alignments. When an ontology o evolves into a new version o1, it is 
necessary to update the instances of this ontology (d) and the alignments (A) it has with other 
ontologies (o'). To that extent, a new alignment (A') between the two versions can be 
established and it can be used for generating the necessary instance transformation (T) and 
updated alignments (A•A'). 
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Taking seriously ontology management requires to involve alignment 
management with ontology management. However, so far very few tools 
offer support for alignment management, let alone, joint ontology-alignment 
support. 

3.3 Requirements for alignment support 

Ontology alignments , like ontologies, must be supported during their 
lifecycle phases by adequate tools. These required functions can be 
implemented by services. The most notable services are: 

• Matching two ontologies possibly by specifying the algorithm to use 
and its parameters (including an initial alignment). 

• Storing an alignment in persistent storage. 
• Retrieving an alignment from its identifier. 
• Retrieving alignment metadata from its identifier can be used for 

choosing between specific alignments. 
• Suppressing an alignment from the current alignment pool. 
• Finding (stored) alignments between two specific ontologies. 
• Editing an alignment by adding or discarding correspondences (this is 

typically the result of a graphic editing session). 
• Trimming alignments over a threshold. 
• Generating code implementing ontology transformations, data 

translations or bridge axioms from a particular alignment. 
• Translating a message with regard to an alignment. 
• Finding a similar ontology is useful when one wants to align two 

ontologies through an intermediate one. 

For instance, someone wanting to translate a message expressed in 
ontology o to ontology o'' can ask for matching the two ontologies and for a 
translation of the message with regard to the obtained alignment. A more 
extreme scenario involves (1) asking for alignments between o and o'', 
maybe resulting in no alignment, (2) asking for an ontology close to o'' 
which may result in ontology o' , (3) asking for the alignments between o 
and o', which may return several alignments a, a' and a'', (4) asking for the 
metadata of these alignments and (5) choosing a' because it is certified by a 
trusted authority, (6) matching o' and o'' with a particular algorithm, (7) 
trimming the result over a reasonable threshold for this algorithm, (8) editing 
the results so that it seems correct, (9) storing it in the server for sharing it 
with other people, (10) retrieving alignment a' and this latter one as data 
translators, (11) finally applying these two translations in a row to the initial 
message. 
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Most of these services correspond to primitives provided by the 
Alignment API (Euzenat 2004). They require, in addition, several features 
extending traditional matching frameworks: 

• The ability to store alignments, whether they are provided by automatic 
means or by hand;  

• Their proper annotation in order for the clients to evaluate the 
opportunity to use one of them or to start from it (this starts with the 
information about the matching algorithms, and can be extended to the 
justifications for correspondences that can be used in agent 
argumentation); 

• The ability to generate knowledge processors such as mediators, 
transformations, translators, rules as well as to apply these processors if 
necessary; 

• The possibility to find similar ontologies and to contact other such 
services in order to ask them for operations that the current service 
cannot provide by itself. 

There is no constraint that the alignments are computed on-line or off-
line, i.e., they are stored in the alignment store, or that they are processed by 
hand or automatically. This kind of information can however be stored 
together with the alignment in order for the client to be able to discriminate 
among them. 

3.4 Example scenario: data mediation for Semantic Web 
services 

The remainder of this chapter presents in more depth the functions of 
editing (Section 4), communicating (Section 5) and processing (Section 6) 
alignments. We will neither consider the alignment creation which has been 
the subject of much literature, nor the evaluation. Each of these functions 
will be illustrated through a common example related to Semantic Web 
services. 

Web services represent one of the areas where data mediation is the most 
required. Services are resources usually developed independently which 
greatly vary from one provider to another in terms of the used data formats 
and representation. By adding semantics to Web services, heterogeneity 
problems do not disappear but require more intelligent dynamic and flexible 
mediation solutions. Ontologies which carry most of these explicit semantics 
become the crucial elements to support the identification and capturing of 
semantic mismatches between models. 
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Web Services Execution Environment (WSMX) is a framework that 
enables discovery, selection, invocation and interoperation of Semantic Web 
services (Mocan et al., 2006a). Ontology-based data mediation plays a 
crucial role in enabling all the above mentioned service operations. Different 
business actors use ontologies to describe their services internal business 
logic, and, more importantly in this case, their data. Each of these actors uses 
its own information system, e.g., WSMX, and tries to interact with other 
actors, part of other (probably more complex) business processes (Figure 6-
5). A specialized component or service is needed to transform the data 
expressed in terms of a given ontology (the source ontology) in the terms of 
another ontology (target ontology), allowing the two actors to continue using 
their own data representation formats. Being part of a run time process the 
data (i.e. instances) transformation has to be performed completely 
automatically. Also, due to the fact that such a mediator has to act in a 
business environment, the result of the mediation process has to be correct 
and complete at all time. 

In order to achieve these three requirements (automation, correctness and 
completion), the whole process is split in two phases: a design time phase 
which covers the correctness and completion by involving the human 
domain expert and the run time phase when the mediation is performed in an 
automatic manner based on the alignments established at design time. 

We will provide further details on these two phases in Section 4 and 
Section 6; Section 5 will consider the management of the alignments 
between these two phases. 

Figure 6-5. Instance transformation scenario. 
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4. DESIGN TIME ALIGNMENT SUPPORT 

The first place where ontology heterogeneity can be found is while 
designing an application. Ontology management environments (see Chapter 
3 of this book) must support users in obtaining alignments and manipulating 
them. We provide some requirements for such an environment and detail 
further the Web Service Modeling Toolkit from this point of view. 

4.1 Requirements 

Design time alignment support requires first the ability to obtain an 
alignment between two ontologies. This can be achieved by retrieving an 
existing alignment, running a matching algorithm or creating an alignment 
manually. 

Retrieving an alignment requires that alignments are stored and 
accessible somewhere. This can be done within the current ontology 
management environment, either from the local disk or from a remote server. 
If alignments are to be of good quality, it is preferable that the environment 
provides access to remote servers storing alignments. We will come back to 
this point in Section 6. 

Running a matching algorithm requires the availability of such an 
algorithm. Having several such algorithms available in an ontology 
management environment seems highly desirable. Some tools provide 
support for finding the correspondences, like Protégé through the Prompt 
suite (Noy and Musen, 2003). 

An often overlooked functionality of matching algorithms is their ability 
to provide explanation for the provided alignments. Explanations can be 
obtained by interacting with the matcher or by accessing metadata about a 
stored alignment. (Shvaiko et al., 2005) explores the first alternative. 

These alignments may also need to be manipulated. Most common 
manipulations involve trimming correspondences under a threshold or 
aggregating several alignments obtained on the same two ontologies. 

Finally, creating an alignment manually requires an alignment editor. The 
same alignment editor can be used for manipulating more precisely the 
obtained alignments. They should provide a convenient display of the 
currently edited alignments and the opportunity to discard, modify or add 
correspondences. Ideally, from the alignment editor, all the design time 
functions should be available. Since ontologies and alignments can be very 
large, it is very challenging to offer intuitive alignment editing support. 

The VisOn tool, developed by University of Montréal, is such a tool that 
can be used for editing alignments in the Alignment API format. Prompt also 
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offers such facilities. Other tools developed for database schema matching 
could be adapted.  

The Web Service Modeling Toolkit is an Integrated Development 
Environment (IDE) for Semantic Web services which also provides ontology 
engineering capabilities. Among other capabilities, WSMT offers a set of 
tools for creating, editing and storing ontology alignments. In the following 
section these WSMT features will be described in more details.  

4.2 Example design-time tool: Web Service Modeling 
Toolkit 

As mentioned above, data mediation within a semantic environment such 
as WSMX is a semi-automatic process where alignments between two 
ontologies are created at design time and then applied at run time in order to 
perform instance transformation in an automatic manner. Approaches for 
automatic generation of ontology alignments do exist but their accuracy is 
usually unsatisfactory for business scenarios and it is necessary for business 
to business integration to have an engineer involved in creating and 
validating the correspondences between ontologies. This is a non-trivial task 
and the user should be guided through the process of creating these 
alignments and ensuring their correctness. 

Web Service Modeling Toolkit (WSMT) (Kerrigan et al., 2007) is a 
Semantic Web service and ontology engineering toolkit, also featuring tools 
capable of producing alignments between ontologies based on human user 
inputs. It offers a set of methods and techniques that assist domain experts in 
their work such as different graphical perspectives over the ontologies, 
suggestions of the most related entities from the source and target ontology, 
guidance throughout the matching process (Mocan et al., 2006b). The tools 
and the domain expert work together in an iterative process that involves 
cycles consisting of suggestions from the tool side and validation and 
creation of correspondences from the domain expert side. 

Within WSMT, alignments are expressed by using the Abstract Mapping 
Language (AML) (Scharffe and de Bruijn, 2005) which is a formalism-
neutral syntax for ontology alignments. WSMT includes several tools and 
editors meant to offer all the necessary support for editing and managing 
such ontology alignments: 

Alignment Validation: WSMT provides validation for the AML syntax 
useful especially when alignments created in various tools need to be 
integrated into the same application. 

Alignment Text Editor: It provides a text editor for the human readable 
syntax of AML. It provides similar features to that of a programming 
language editor, e.g., a Java editor, including syntax highlighting, in line 
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error notification, content folding and bracket highlighting. This editor 
enables the engineer to create or modify correspondences through textual 
descriptions. Such a tool is normally addressed to experts familiar with both 
the domain and the alignment language. 

Alignment View-based Editor: The View-based Editor provides 
graphical means to create correspondences between ontologies. Such a tool 
is addressed to those experts that are capable of understanding the problem 
domain and who can successfully align the two heterogeneous ontologies but 
they are not specialists in logical languages as well. Additionally, even if 
domain experts have the necessary skills to complete the alignment by using 
a text editor, a graphical mapping tool would allow them to better 
concentrate on the heterogeneity problems to be solved and in principle to 
maximize the efficiency of the overall mapping process. All the advantages 
described above, have been acknowledged by other approaches as well 
(Maedche et al., 2002; Noy and Musen, 2003). The View-based Editor 
includes some of well-established classical methods, e.g. lexical and 
structural suggestion algorithms, iterative alignment creation processes. 
Additionally, this particular approach provides several new concepts and 
strategies aiming to enhance the overall automation degree of the ontology 
matching tool (Mocan and Cimpian, 2005). Three of the most important 
features of this tool (views, decomposition and contexts) are presented 
below. 

A view (also referred to as a perspective in (Mocan et al., 2006b)) 
represents a viewpoint in displaying the entities defined in a particular 
ontology; each view displays entities from the ontology in a two-level tree 
structure. The graphical viewpoint adopted to visualize the source and the target 
ontologies is important to simplify the design of the correspondences according 
to their type. By switching between combinations of these views on the source 
and the target ontologies, certain types of correspondences can be created using 
the same operations, combined with mechanisms for ontology traversal and 
contextualized visualization strategies. 

Each view specifies what ontological entities should appear as roots or as 
children in these trees, by switching the focus between various relationships 
existing in the ontology. Views can be defined and grouped in pairs in such a 
way to solicit specific skill sets, offering support for users profiling. 
Currently, three types of views are available, namely PartOf (concepts as 
roots and their attributes as children), InstanceOf (concepts as roots and their 
attributes together with the values they can take as children) and RelatedBy 
(attributes as roots and their domain or range as children); Figure 6-6 
illustrates the creation of alignments by using combinations of these 
perspectives. 
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Figure 6-6 Mapping views in the AML View-Based Editor. 

Decomposition is the process of bringing into focus the descriptive 
information of the root items presented in the view tree by exploring their 
children. A successful decomposition is followed by a context update. That 
is, instead of displaying the whole ontology at a time, only a subset (the one 
determined by decomposition) can be presented. Such subsets form the 
source and target contexts. If views can be seen as a vertical projection over 
ontologies, contexts can be seen as a horizontal projection over views. 
Decomposition and contexts aims to improve the effectiveness of the 
matching process by keeping the domain expert focused on the exact 
heterogeneity problem to be solved and by assuring that all the problem-
related entities have been explored. 

Mappings Views: The Mappings Views provide a light overview on the 
alignment created either by using the Text Editor or the View-based Editor. 
Instead of seeing the full description of an alignment (as quadruples in AML 
syntax or grounded rules in an ontology language) the domain expert can 
choose to see a more condensed version of this information: which are the 
entities in the source and in the target that are matched and if there are some 
special conditions associated with them. 

Once a satisfying alignment has been designed, it can be stored and 
managed so that it is available to whoever needs it. 
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5. ONTOLOGY ALIGNMENT MANAGEMENT AND 

MAINTENANCE 

As mentioned in our requirements, the alignments should be stored and 
shared adequately. In particular, if alignments between widely accepted 
ontologies are required, they will have to be found over and over again. An 
infrastructure capable of storing the alignments and of providing them on 
demand to other users would be useful. 

Alignment support can be implemented either as a component of an 
ontology management tool and even being specific to each particular 
workstation (see Section 7). However, in order to optimize sharing, which is 
an important benefit of using alignments, it is better to store the alignments 
in an independent alignment server. Such a server can be either used for 
sharing alignments among a particular organization or open to the semantic 
Web at large. 

5.1 Alignment server for storing 

Alignment servers are independent software components which offer a 
library of matching methods and an alignment store that can be used by their 
clients. In a minimal configuration, alignment servers contribute storing and 
communicating alignments. Ideally, they can offers all the services identified 
in Section 3 and in particular alignment manipulation. 

Alignment servers serve two purposes: for design time ontology 
matching, they will be components loosely coupled to the ontology 
management environment which may ask for alignments and for exploiting 
these alignments. For run time matching, the alignment servers can be 
invoked directly by the application. So, alignment servers will implement the 
services for both design time and run time matching at once. 

These servers are exposed to clients, either ontology management 
systems or applications, through various communication channels (Agent 
communication messages, Web services) so that all clients can effectively 
share the infrastructure. A server may be seen as a directory or a service by 
Web services, as an agent by agents, as a library in ambient computing 
applications, etc. 

Alignment servers must be found on the Semantic Web. For that purpose 
they can be registered by service directories, e.g., UDDI for Web services. 
Services or other agents should be able to subscribe some particular results 
of interest by these services. These directories are useful for other Web 
services, agents, peers to find the alignment services. 

In addition, servers can be grouped into an alignment infrastructure 
which supports them in communicating together. They can be able to 
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exchange the alignments they found and select them on various criteria. This 
can be useful for alignment servers to outsource some of their tasks. In 
particular, it may happen that: 

• they cannot render an alignment in a particular format; 
• they cannot process a particular matching method; 
• they cannot access a particular ontology; 
• a particular alignment is already stored by another server. 

In these events, the concerned alignment server will be able to call other 
servers. This is especially useful when the client is not happy with the 
alignments provided by the current server, it is then possible to either deliver 
alignments provided by other servers or to redirect the client to these servers. 

Moreover, this opens the door to value-added alignment services which 
use the results of other servers as a pre-processing for their own treatments 
or which aggregates the results of other servers in order to deliver a better 
alignment. 

5.2 Sharing alignments 

The main goal of storing alignments is to be able to share them among 
different applications. Because, these applications have diverse needs and 
various selection criteria, it is necessary to be able to search and retrieve 
alignments on these criteria. Alignment metadata used for indexing 
alignments are thus very important. So far, alignments contain information 
about: 

• the aligned ontologies; 
• the language in which these ontology are expressed; 
• the kind of alignment it is (1:1 or n:m for instance);  
• the algorithm that provided it (or if it has been provided by hand); 
• the confidence in each correspondence. 

This information is already very precious and helps applications selecting 
the most appropriate alignments. It is thus necessary that ontology matchers 
be able to generate and alignment servers be able to store these metadata. 
Oyster (Palma and Haase, 2005), a peer-to-peer infrastructure for sharing 
metadata about ontologies that can be used in ontology management, has 
been extending for featuring some metadata about alignments. 

However, metadata schemes are extensible and other valuable 
information may be added to alignment format, such as: 

• the parameters passed to the generating algorithms;  
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• the properties satisfied by the correspondences (and their proof if 

necessary); 
• the certificate from an issuing source; 
• the limitations of the use of the alignment; 
• the arguments in favor or against a correspondence (Laera et al., 2007). 

All such information can be useful for evaluating and selecting 
alignments and thus should be available from alignment servers. 

5.3 Evolving and maintaining ontology alignments 

Like ontologies, alignments are not cast in stone once and for all. In 
particular, as ontologies evolve, it is necessary to evolve alignments 
accordingly. However, it can be quite hard for the engineer to be aware of 
the effects that these constant changes have. It is thus particularly important 
to provide support for alignment evolution and maintenance in alignment 
management environments. 

Some tools, such as PrompDiff (Noy and Musen, 2003), are already 
particularly good at finding alignments between versions of ontologies. 
When such an alignment is made available, it is possible, as displayed in 
Figure 6-4, to provide by composition new versions of the alignment tied to 
the previous version and to migrate data. 

WSMT offers a MUnit Testing View for the Abstract Mapping Language 
which gives the engineer support to ensure that instances are being correctly 
transformed. Users can define pairs of sources and targets, specifying that 
the result of transforming the sources, using the existing alignments, should 
be the targets. These tests can then be incrementally run by engineers when 
alignment validation is required. 

6. ALIGNMENT PROCESSING 

Finally, once alignments are obtained, either using a graphical tool, as the 
output of a matching algorithm, or retrieved from an alignment store, they 
can be processed in concrete mediation scenarios. The following techniques 
all require an alignment between the source and target ontologies in order to 
be achieved. 

• Query rewriting: a query addressed to a source ontology needs to be 
rewritten in terms of a query for a target ontology.  

• Instance transformation: a set of instances described under a source 
ontology needs to be transformed into terms of a target ontology. 
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• Ontology merging: a set of source ontologies need to be merged into a 

one ontology. 

The scenario determines the operation that must be processed: a Web 
service data mediator, as the one presented in Section 3.5, requires 
transformation of instances, while on-line catalog integration may require 
query rewriting in order to query the various catalogs.  

When applying instance transformation or query rewriting, the resulting 
sets of instances may contain duplicates. For example, two similar products 
sold by different vendors. In the case of ontology merging, it might also be 
necessary to merge instances described by the merged ontologies. Again, 
duplicates have to be identified in order to avoid their duplication in the 
newly created ontology. The technique of merging similar instances is 
known as instance identification and unification. 

We describe these techniques in detail in the remaining of this section. 
Their application often requires preprocessing of the alignment in order to 
make it executable for the mediation system. Section 6.3 presents how 
alignments are transformed between various formats, motivating the use of a 
common alignment format for exchange between applications, algorithms 
and tools. 

6.1 Query rewriting and instance transformation 

Applying query rewriting techniques consists, as the name suggests, of 
rewriting a query in terms of a source ontology Os into terms of a target 
ontology Ot. The rewriting engine takes as input the original query qs, the 
alignment between Os and Ot, and returns a query qt in terms of Ot. Figure 6-
7 illustrates this process. Query rewriting has been largely studied in 
database integration (Dushka and Genesereth, 1997). 

Once the rewritten query addressed to the target ontology, the instances 
eventually returned are described in terms of Ot. They might have to be 
transformed to instances of Os in order to be further processed by the system. 

Instance transformation is done by taking a set of instances described 
under a source ontology Os, and transforming it to instances of a target 
ontology Ot using the alignment between the two ontologies. New instances 
of Ot classes are described, and attribute values are transformed (Scharffe 
and de Bruijn, 2005) according to the alignment. This process may lead to 
the creation of multiple target instances for one source instance, or, 
inversely, to combine some source instances into one target instance. 
Instance transformation, illustrated in Figure 6-7, is used in the example 
scenario in Section 3.5. 
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Figure 6-7. Query mediation (from (Euzenat and Shvaiko, 2007)). From two matched 
ontologies o and o', resulting in alignment A, a mediator is generated. This allows the 
transformation of queries expressed with the entities of the first ontology into a query using 
the corresponding entities of a matched ontology and the translation back of the results from 
the second ontology to the first one. 

The two former techniques result in two sets of instances described 
according to a single ontology. The different origin of these instances may 
lead to duplicates. For instance, in a Web application integrating various on-
line catalogs, each described as an ontology, once the catalogs queried and 
the results adapted to the reference ontology, it is likely that some products 
are sold by many vendors. Similar products have to be identified in order to 
be presented under the same one (eventually with the different prices kept 
separated). Instance unification techniques are used to merge similar 
instances by analyzing their attributes values, as well as the relations they 
share with other instances. 

Instance unification is also necessary after two ontologies have been 
merged into one. Instances of the source ontologies then also need to be 
merged, and duplicates removed. The next section presents the ontology 
merging technique. 

6.2 Merging 

 There are cases where the ontologies are not kept separate but need to be 
merged into a single new ontology. As an example, we can consider the case 
of one vendor acquiring another; their catalog will probably be merged into a 
single one. Ontology merging is realized by taking the two ontologies to be 
merged and an alignment between these two ontologies. It results in a new 
ontology combining the two source ontologies. The ontology merging 
process can be fully automatized if an adequate alignment is provided 
(Scharffe, 2007), but usually requires human intervention in order to solve 
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conflicts and choose a merging strategy. Figure 6-8 illustrates the ontology 
merging process.  

 

Figure 6-8. Ontology merging (from (Euzenat and Shvaiko, 2007)). From two matched 
ontologies o and o', resulting in alignment A, articulation axioms are generated. This allows 
the creation of a new ontology covering the matched ontologies. 

The techniques presented in the previous two subsections require only the 
alignment as an input (they interpret it). As we will see in the next section, 
this alignment may require a further step in order to be usable. This step is 
tightly linked to the format in which the alignment is expressed. 

6.3 Semantic data mediation 

The mediation of the heterogeneous semantic data can be achieved 
through instance transformation. Data represented by ontology instances has 
to be transformed either by the sender or transparently by a third party in the 
format required by the receiver, i.e., instances expressed in the target 
ontology.  

In order to accommodate such a mediation scenario, the alignments 
generated by using the techniques described in Section 4 have to be 
processed by an engine able to perform instance transformation. If the 
alignments are expressed in an abstract form, e.g., using AML, an extra step 
has to be performed: the correspondences in the alignment must be 
expressed in a concrete ontology specification language which can be 
interpreted.  



6. Ontology Alignments 201
 

 

Figure 6-9. Run time Data Mediator Usage Scenario (from (Mocan and Cimpian, 2007)). 

Figure 6-9 shows how such an instance transformation engine (the Data 
Mediation Run-Time Component in WSMX) can be deployed and used in 
various scenarios. A straightforward way is to integrate it in an Information 
System (in this case WSMX) which needs mediation support in order to 
facilitate the exchange of heterogeneous data. 

Another possibility is to encapsulate this engine in a (Semantic) Web 
service and to allow external calls having as inputs the source instances and 
optionally the alignments to be applied. As output, the corresponding target 
instances are returned.  

Additionally, such an engine can be used for testing the correctness of the 
alignments been produced, either by using it as a test module in the design-
time matching tool (see the WSMT MUnit) or by providing a Web interface 
that would allow domain experts to remotely send source instances to be 
transformed in target instances.  

7. SOFTWARE AND TOOLS 

Most of the work on general organisation of alignments is tied to some 
kind of application, e.g., C-OWL for peer-to-peer applications, WSMX for 
Web services, Edutella for emerging semantics. There are, however, a few 
systems which are autonomous enough for being used as independent 
alignment management support. 

Model management has been promoted in databases for dealing with data 
integration in a generic way. It offers a high-level view to the operations 
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applied to databases and their relations. Rondo5 is such a system (Melnik et 
al., 2002). It offers operators for generating the alignments, composing them 
and applying them as data transformation. It is currently a standalone 
program with no editing functions. 

MAFRA6 (Mädche et al., 2002) proposes an architecture for dealing with 
“semantic bridges” that offers many functions such as creation, 
manipulation, storing and processing such bridges. MAFRA has 
transformations associated with bridges: it does not record alignments in a 
non processable format. MAFRA does not offer editing or sharing 
alignments. 

Protégé is an ontology edition environment (see Chapter 3 of this book) 
that offers design time support for matching. In particular it features Prompt7 
(Noy and Musen, 2003), an environment that provides some matching 
methods and alignment visualisation. Since alignments are expressed in an 
ontology, they can be stored and shared through the Protégé server mode. 
Prompt can be extended through a plug-in mechanism. 

Foam8 (Ehrig, 2007) is a framework in which matching algorithms can be 
integrated. It mostly offers matching and processor generator. It does not 
offer on-line services nor alignment editing, but is available as a Protégé 
plug in and is integrated in the KAON2 ontology management environment. 

COMA++ is another standalone (schema) matching workbench that 
allows integrating and composing matching algorithms. It supports 
matching, evaluating, editing, storing and processing alignments. 

The Alignment Server, associated with the Alignment API9 
(Euzenat, 2004), offers matching ontologies, manipulating, storing and 
sharing alignments as well as processor generation. It can be accessed by 
clients through API, Web services, agent communication languages ot 
HTTP. It does not support editing. 

WSMT10, which has been taken as example within these pages is a design 
time alignment creator and editor. It manipulates the AML format and can 
generate WSML rules. It also works as a standalone system. 

The NeOn11 project ambitions to produce a toolkit for ontology 
management which features run time and design time ontology alignment 
support. 

                                                      
5 http://infolab.stanford.edu/~modman/rondo/ 
6 http://mafra-toolkit.sourceforge.net 
7 http://protege.stanford.edu/plugins/prompt/prompt.html 
8 http://www.aifb.uni-karlsruhe.de/WBS/meh/foam/ 
9 http://alignapi.gforge.inria.fr 
10 http://wsmt.sourceforge.net 
11 http://www.neon-project.org 



6. Ontology Alignments 203
 
8. CONCLUSIONS 

Applications using ontologies face the problem of ontology heterogeneity 
whenever they want to communicate with each others or evolve. Hence, 
ontology management must take ontology heterogeneity into account. 
Dealing with ontology heterogeneity involves finding the alignments, or sets 
of correspondences, existing between ontology entities and using them for 
reconciling the ontologies. 

Because, this problem occurs in many applications and is solved in many 
different ways, it is better dealt with in a general way. This involves 
managing alignments together with ontologies. 

We have presented alignment management through the lifecycle of 
alignments and the associated support functions: creating, selecting, editing, 
maintaining, sharing and processing alignments. We have presented a few 
systems which implement part of this alignment support and in particular the 
notion of alignment server which can be used for storing and sharing 
alignment at both run time and design time. 

Alignment management is not as advanced as ontology management and 
much remains to be developed for fully supporting and sharing alignments 
on a wide scale. Challenges for alignment management include adoption 
challenges and research problems. The important challenge is to have a 
natural integration of alignment management with most of the ontology 
engineering and ontology management systems. If alignment sharing and 
management is to become a reality, then there should not be one proprietary 
format with each tool that cannot be handled by other tools. Another 
challenge is the easy finding of available alignments. For this purpose, 
proper alignment metadata and Web-wide search support have to be set up. 

There remains difficult research problems in the domain of alignment 
management such as: 

• The identification of duplicate alignments or evolutions from a particular 
alignment; 

• Aggregating, composing and reasoning usefully with a massive number 
of alignments; 

The design of ever better user interaction systems for both interacting 
with matching systems and editing alignments. 
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ADDITIONAL READING 

The topic of alignment management is relatively new so there is no 
specifically dedicated publications. A recent extensive reference on ontology 
matching is (Euzenat and Shvaiko, 2007). ontologymatching.org is a Web 
site collecting information about ontology matching. 
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Abstract: A core requirement for the take-up of ontology-driven technologies at industry 
level is the availability of proved and tested methods which allow an efficient 
engineering of high-quality ontologies, be that by reuse, manual building or 
automatic knowledge acquisition methods. This includes in equal measure 
feasible technological support, which is provided by the methodologies, 
methods and tools emerged in the last decades in the field of ontology 
management, and the economics of ontology engineering projects, in 
particular issues of cost effectiveness and profitability. This chapter presents 
and discusses approaches for reliably assessing the costs of building ontologies 
and the usage of cost-related information to quantifiably support a wide range 
of decisions arising during the lifecycle of an ontology. We account for the 
similarities and differences between software and ontology engineering in 
order to establish the appropriateness of applying methods, which have a long-
standing tradition in this adjacent engineering field, to ontologies. Building 
upon the results of this analysis we introduce ONTOCOM as the first 
parametric cost model for ontologies and discuss means to improve its 
accuracy and extend its applicability for a wide range of ontology engineering 
projects at public and corporate level. 

Keywords: business view; cost estimation; ontology costs; ontology engineering; 
parametric method 

1. INTRODUCTION 

Though ontologies and associated ontology management tools have 
become increasingly popular in the last decades, the dissemination of 
ontologies and ontology-based applications as envisioned by the Semantic 
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Web community requires fine-grained methodologies which are able to deal 
with both technical and economic challenges of ontology engineering. In 
order for ontologies to be built and deployed at a large scale and with 
sufficient efficiency and effectiveness one needs not only technologies and 
tools to assist the development process, but also proved and tested means to 
control the overall engineering process. A wide range of ontology 
engineering methodologies have emerged in the Semantic Web community. 
Apart from minor differences in the level of detail adopted for the 
description of the process stages they define ontology engineering as an 
iterative process, which shows major similarities to the neighbored research 
field of software engineering. However existing methodologies do not cover 
a crucial aspect of the engineering process, which has gained significant 
attention in adjacent engineering areas because of its importance in real-
world business contexts: the costs estimation using pre-defined cost models 
(Hepp,2007). 

In order to precisely estimate the costs related to the ontology 
engineering process, there is a need for empirically tested cost models which 
exploit the results already achieved with respect to this issue in related 
engineering fields. At the same time a cost model for ontologies should take 
into account the critical factors and particularities of the ontology 
engineering process. With ONTOCOM we present the first existing 
approach in this new emerging field of ontology engineering. Estimating 
costs for ontology engineering is similar to estimating costs for software 
engineering as it requires the consideration of economic aspects for generic 
products and the processes they result of. Therefore, our approach largely 
benefits from the experiences made in estimating costs for software 
engineering. By using expert interviews we identified the most relevant cost 
drivers for a wide class of ontology engineering projects. In a large user 
study we acquired relevant data from a large number of already existing 
ontology engineering projects and calibrated the model with promising 
results. Combing the two we were able to identify dimensions for further 
research and development in order to create a methodology for the creation 
of any kind of cost estimation model for ontologies, independently of the 
ontology lifecycle or the organizational setting it might be employed. 

The outline of this chapter is as follows. We start by motivating the need 
for cost-related information in ontology engineering and elaborating on the 
most relevant methods for cost estimation which are likely to be suited for 
this purpose in Section 2. In Section 3 we present the ONTOCOM model 
based on the previously identified most promising methods for cost 
estimation. We show the various parts of ONTOCOM such as a parametric 
formula to estimate costs and relevant cost drivers. We show how the 
generic ONTOCOM model can be broken down for concrete industrial 
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projects by instantiation of the various parameters and analyze the critical 
issues which are required in order to design a methodology for the design of 
flexible, customized cost models for ontologies which best fit specific 
organizational and technological constraints. Next, Section 4 gives an 
outline of the software tool support which can ease the usage of ONTOCOM 
or other cost models by ontology engineers. Section 5 gives an overview of 
related work, and finally Section 6 summarizes the conclusions and lessons 
learned from our research and the planned future work. 

2. COST ESTIMATION FOR ONTOLOGY 
ENGINEERING  

Cost estimation can be defined as the art of predetermining the lowest 
realistic price of an item or activity which assures a normal profit. 
Independently of the sector in which it is performed, cost estimation 
produces probabilistic assessments of the expected effort (usually expressed 
in person months rather than monetary units) and/or the elapsed time. 
Concretely, cost estimation methods generate predictions which indicate at 
different levels of accuracy the most likely values, as well as upper and 
lower bounds on the values of the aforementioned parameters. In the case of 
Ontology Engineering cost estimation aims at predicting the costs related to 
activities performed during the lifecycle of an ontology. 

Estimates of effort and duration are required throughout the entire 
lifecycle of a product, be that software, ontologies or any other type of 
merchandise. In an early stage of a project, they are essential for determining 
the feasibility of the project, or for performing cost-benefit analysis to 
choose among alternative methods to achieve the project goals. The 
inaccuracy of such estimates is, however, relatively high, because of the lack 
of detailed knowledge on the project or its planned outcomes characteristic 
for this stage. Nevertheless, initial estimates can be updated once the project 
evolves. They are used for controlling purposes, as an instrument to check 
the current status of a project against its final objectives.  

Compared to other engineering disciplines, the goal of estimating the 
costs of an ontology is related to a series of challenges, which can be traced 
back to the particularities of ontology engineering projects and to the current 
state of the art in the field. First, and by contrast to other industry sectors 
which design a new product and produce it multiple times, ontology 
engineering is about building new ontologies, using different methods and 
tools. This problem also applies for software. However, in the latter case it is 
alleviated by  



210 Chapter 7 
 
• a deeper knowledge on typical cost drivers resulting from the long-

standing tradition of the IT industry, 
• the wide range of cost estimation methods which can be applied 

complementarily to overcome limitations at individual method level, and 
• the comparatively high amounts of historical project data available to 

adjust and improve them.  

This should not mean that cost estimation for ontologies can not be 
performed at a feasible level of accuracy. Due to the inherent similarities 
between software and ontologies, many of the achievements, experiences 
and lessons learned for the former are likely to be applicable for the latter, 
and hence form a viable basis to start developing ontology-specific 
prediction methods. However, ontology engineering is a comparatively 
young field of research and development whose economic aspects require 
additional investigation. In the following we study possible approaches to 
the question of ontology development costs before introducing the 
ONTOCOM method, as a first attempt to cope with this problem 

2.1.1 Cost estimation methods 

Estimating costs for engineering processes can be performed according to 
several methods. Due to their limitations with respect to certain classes of 
situations these methods are often used in conjunction during the estimation 
phase. 

• Expert judgment/Delphi method The Delphi Method is based on a 
structured process for collecting and distilling knowledge from a group 
of human experts by means of a series of questionnaires interspersed 
with controlled opinion feedback. The involvement of human experts 
using their past project experiences is a major advantage of the 
approach. Its most extensive critique point is related to the difficulties to 
explicitly state the decision criteria used by the contributing experts and 
to its inherent dependency of the availability of experts to carry on the 
process. 

• Analogy method The main idea of this method is the extrapolation of 
available data from similar projects to estimate the costs of the proposed 
project. The method is suitable in situations where empirical data from 
previous project is available and trustworthy, and depends on the 
accuracy in establishing real differences between completed and current 
projects. 

• Decomposition method This involves generating a work breakdown 
structure, i.e. breaking a product into smaller components or a project 
into activities and tasks in order to produce a lower-level, more detailed 
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description of the product/project at hand, which in turn allows more 
accurate cost estimates. The total costs are calculated as average values, 
possibly adjusted on the basis of the complexity of the components/tasks 
considered. The successful application of the method depends of the 
availability of necessary information related to the work breakdown 
structure. 

• Parametric/algorithmic method This method involves the usage of 
mathematical equations based on research and historical data from 
previous projects. The method analyzes main cost drivers of a specific 
class of projects and their dependencies and uses statistical techniques to 
refine and customize the corresponding formulas. As in the case of the 
analogy method the generation of a proved and tested cost model using 
the parametric method is directly related to the availability of reliable 
and relevant data to be used in calibrating the initial core model.  

Orthogonally to the aforementioned methods we mention two core 
approaches to cost estimation (cf. Table 7-1). 

• Bottom-up estimation This methodology involves identifying and 
estimating costs of individual project components separately and 
subsequently summing up the outcomes to produce an estimation for the 
overall project.  

• Top-down estimation In contrast to the bottom-up approach the top-
down method relies on overall project parameters. For this purpose, the 
project is partitioned into lower-level components and lifecycle phases 
beginning at the highest level. The approach produces are total project 
estimates, in which individual process tasks or product components are 
responsible for a proportion of the total costs. 

The decomposition method is based on a bottom-up approach. Estimation 
by expert judgment, analogy or parametric equations can be carried in a top-
down or a bottom-up fashion, also depending of the stage of the project in 
which the estimates need to calculated. Top-down estimation is more 
applicable to early cost estimates when only global properties are known, but 
it can be less accurate due to the less focus on lower-level parameters and 
technical challenges — usually predictable later in the process lifecycle, at 
most. The bottom-up approach produces results of higher-quality, provided a 
realistic work breakdown structure and means to estimate the costs of the 
lower-level units the product/project has been decomposed into.  

In addition to effort estimates in terms of person months several cost 
models also provide means to estimate the duration of projects, whilst the 
two values are usually assumed to depend of each other according to a 
specific mathematical function. The most prominent examples of duration 
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estimation methods are parametric (e.g. the Putnam model (Putnam, 2003) or 
the COCOMO model (Boehm, 1981) in software engineering). 

Table 7-1. Methods and approaches to cost estimation 
 Bottom-up estimation Top-down estimation 
Expert judgment 
method 

Experts estimate the costs of low-
level components or activities. 

Experts estimate the total 
costs of a product or a 
project 

Analogy method Costs are calculated using analogies 
between low-level components or 
activities 

Costs are estimated using a 
global similarity function 
for products or projects 

Decomposition 
method 

Costs are calculated as an average 
sum of the costs of lower-level 
units, whose development effort are 
known in advance 

 

Parametric method Costs are calculated using a statistic 
model which predicts the costs of 
lower-level units on the basis of 
historical data about the costs of 
developing such units. 

Costs are calculated using 
a statistic model which is 
calibrated using historical 
data about, and predicts the 
current value of the total 
development costs 

2.1.2 Applicability to ontology engineering 

The applicability of the mentioned cost estimation methods to ontology 
engineering depends of course on the process- and product-driven 
characteristics of ontology engineering. In the following we examine the 
advantages and disadvantages of each of these approaches given these 
characteristics and the current state of the art in the field: 

• Expert judgment/Delphi method The expert judgment method seems 
to be appropriate for our goals since large amount of expert knowledge 
with respect to ontologies is already available in the Semantic Web 
community, while the costs of the related engineering efforts are not. 
Experts’ opinion on this topic can be used to compliment the results of 
other estimation methods. 

• Analogy method The analogy method requires knowledge about the 
features of an ontology, or of an ontology development process, which 
are relevant for cost estimation purposes. Further on it assumes that an 
accurate comparison function for ontologies is defined, and that we are 
aware of cost information from previous projects. While several 
similarity measures for ontologies have already been proposed in the 
Semantic Web community, no case studies on ontology costs are 
currently available. There is a need to perform an in-depth analysis of 
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the cost factors relevant for ontology engineering projects, as a basis for 
the definition of such an analogy function and its customization in 
accordance to previous experiences. 

• Decomposition method This method implies the availability of cost 
information with respect to single low-level engineering tasks, such as 
costs involved in the conceptualization of single concepts or in the 
instantiation of the ontology. Due to the lack of available information the 
decomposition method can not be applied yet to ontology engineering. 

• Parametric/algorithmic method Apart from the lack of costs-related 
information which should be used to calibrate cost estimation formula 
for ontologies, the analysis of the main cost drivers affecting the 
ontology engineering process can be performed on the basis of existing 
case studies on ontology building, representing an important step toward 
the elaboration of a predictable cost estimation strategy for ontology 
engineering processes. The resulting parametric cost model has to be 
constantly refined and customized when cost information becomes 
available. Nevertheless the definition of a fixed spectrum of cost factors 
is important for a controlled collection of existing real-world project 
data, a task which is fundamental for the subsequent model calibration. 
This would also be useful for the design and customization of alternative 
prediction strategies, such as the aforementioned analogy approach. 

Given the fact that cost estimation has been marginally explored in the 
Semantic Web community so far, and that little is known about the 
underlying cost factors, a bottom-up approach to the previously introduced 
methods is currently not practicable, though it would produce more accurate 
results. In turn, expert judgment, analogy and parametric cost estimates 
could be obtained in a top-down fashion, if the corresponding methods are 
clearly defined and customized in the context of ontology engineering. An 
overview of the results of this feasibility study is depicted in Table 7-2. Due 
to the incompleteness of the information related to cost issues, a combination 
of the three is likely to overcome certain limitations of single methods. 

Table 7-2. Cost estimation methods and approaches currently applicable to Ontology 
Engineering 

 Bottom-up estimation Top-down estimation 
Expert judgment 
method 

  

Analogy method   
Decomposition method   
Parametric method   

 

Duration estimates can be defined analogously for parametric models. 
For this purpose one can assume a similar function defining the correlation 
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between staff efforts and time within ontology engineering projects as in 
other engineering disciplines. This function needs to be customized to the 
particularities of ontology engineering projects. 

In the following we introduce the ontology cost model ONTOCOM, 
which is a first attempt to apply the parametric method to ontology 
engineering, and discuss ways to improve its prediction quality. 

3. THE ONTOLOGY COST MODEL ONTOCOM 

ONTOCOM is a generic cost model for ontology engineering. The model 
is generic in the sense that it assumes a sequential ontology lifecycle, 
according to which an ontology is conceptualized, implemented and 
evaluated, after an initial analysis of the requirements it should fulfill (see 
below). By contrast ONTOCOM does not consider alternative engineering 
strategies such as rapid prototyping or agile methods, which are based on 
different lifecycles. This limitation is issued in Section 3.5, which describes 
among other things how the generic model could be customized to suit such 
scenarios. 

The cost estimation model is realized in three steps. First a top-down 
work breakdown structure for ontology engineering processes is defined in 
order to reduce the complexity of project budgetary planning and controlling 
operations down to more manageable units (Boehm, 1981). The associated 
costs are then elaborated using the parametric method. The result of the 
second step is a statistical prediction model (i.e. a parameterized 
mathematical formula). Its parameters are given start values in pre-defined 
intervals, but need to be calibrated on the basis of previous project data. This 
empirical information complemented by expert estimations is used to 
evaluate and revise the predictions of the initial a-priori model, thus creating 
a validated a-posteriori model. 

3.1 The work breakdown structure 

The top-level partitioning of a generic ontology engineering process can 
be realized by taking into account available process-driven methodologies in 
this field (Gomez et al, 2004, Sure et al, 2006). According to them ontology 
building consists of the following core steps (cf. Figure 7-1): 

1. Requirements Analysis. The engineering team consisting of domain 
experts and ontology engineers performs a deep analysis of the project 
setting with respect to a set of predefined requirements. This step might 
also include knowledge acquisition activities in terms of the re-usage of 
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existing ontological sources or by extracting domain information from 
text corpora, databases etc. If such techniques are being used to aid the 
engineering process, the resulting ontologies are to be subsequently 
customized to the application setting in the conceptualization 
/implementation phases. The result of this step is an ontology 
requirements specification document (Sure et al, 2006). In particular this 
contains a set of competency questions describing the domain to be 
modeled by the prospected ontology, as well as information about its use 
cases, the expected size, the information sources used, the process 
participants and the engineering methodology. 

2. Conceptualization. The application domain is modeled in terms of 
ontological primitives, e. g. concepts, relations, axioms. 

3. Implementation. The conceptual model is implemented in a (formal) 
representation language, whose expressivity is appropriate for the 
richness of the conceptualization. If required reused ontologies and those 
generated from other information sources are translated to the target 
representation language and integrated to the final context. 

4. Evaluation. The ontology is evaluated against the set of competency 
questions. The evaluation may be performed automatically, if the 
competency questions are represented formally, or semi-automatically, 
using specific heuristics or human judgment. The result of the evaluation 
is reflected in a set of modifications/refinements at the requirements, 
conceptualization or implementation level 

 

Figure 7-1. Ontology Engineering Process 

Depending on the ontology lifecycle underlying the process-driven 
methodology, the aforementioned four steps are to be seen as a sequential 
workflow or as parallel activities. Methontology (Gomez et al, 2004), which 
applies prototypical engineering principles, considers knowledge acquisition, 
evaluation and documentation as being complementary support activities 
performed in parallel to the main development process. Other 
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methodologies, usually following a classical waterfall model, consider these 
support activities as part of a sequential engineering process. The OTK-
Methodology (Sure et al, 2002) additionally introduces an initial feasibility 
study in order to assess the risks associated with an ontology building 
attempt. Other optional steps are ontology population (also called 
instantiation) and ontology evolution and maintenance. The former deals 
with the alignment of concrete application data to the implemented ontology. 
The latter relate to modifications of the ontology performed according to 
new user requirements, updates of the reused sources or changes in the 
modeled domain. Further on, likewise related engineering disciplines, 
reusing existing knowledge sources — in particular ontologies — is a central 
topic of ontology development. In terms of the process model introduced 
above, ontology reuse is considered a knowledge acquisition task. 

The parametric method integrates the efforts associated with each 
component of this work breakdown structure to a mathematical formula as 
described below. 

3.2 The parametric equation 

ONTOCOM calculates the necessary person-months effort using the 
following equation: 

PM = A * Sizeα * Π CDi (1) 

According to the parametric method the total development efforts are 
associated with cost drivers specific for the ontology engineering process 
and its main activities. Experiences in related engineering areas (Boehm, 
1981; Korotkiy, 2005) let us assume that the most significant factor is the 
size of the ontology (in kilo entities) involved in the corresponding process 
or process phase. In Equation 1 the parameter Size corresponds to the size of 
the ontology i.e. the number of primitives which are expected to result from 
the conceptualization phase (including fragments built by reuse or other 
knowledge acquisition methods). 

The possibility of a non-linear behavior of the model with respect to the 
size of the ontology is covered by parameter α. The constant A represents a 
baseline multiplicative calibration constant in person months, i.e. costs 
which occur “if everything is normal” when building an ontology with 1000 
ontological primitives. The cost drivers CDi have a rating level (from Very 
low to Very high) that expresses their impact on the development effort. For 
the purpose of a quantitative analysis each rating level of each cost driver is 
associated to a weight (effort multipliers EMij). The productivity range PRi 
of a cost driver is an indicator for the relative importance of a cost driver for 
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the overall estimation (Boehm, 1981). It is calculated as the ratio between 
the highest and the lowest effort multiplier of a cost driver:  

PRi = max(EMij) / min(EMij) (2) 

3.3 The ONTOCOM cost drivers 

The core of the parametric method to estimate costs are the cost drivers, 
which are associated to features of the product or project at hand, which are 
likely to have an impact on the total development efforts. The relevance and 
impact of each cost driver to the overall estimate is subject to continuous 
adjustments based on the analysis of existing project data. 

In order to generate a preliminary list of potential cost drivers for 
ontology engineering, and implicitly for the ONTOCOM model, we 
performed a comprehensive study of the literature in the field, conducted and 
analyzed various case studies, and interviewed several experts.  

The resulting cost drivers can be roughly divided into three categories: 

1. Product-related cost drivers account for the impact of the characteristics 
of the product to be engineered (i.e. the ontology) on the overall costs. 
The most important ontology features with this respect are the 
complexity of the modeled domain, the complexity of the conceptual 
model and its implementation, the complexity of the instantiation and the 
complexity of the evaluation procedure. 

2. Personnel-related cost drivers emphasize the role of the team experience, 
ability and continuity with respect to the effort invested in the 
engineering process. In this category we mention the capability of 
ontology engineering and domain experts, their experience in developing 
ontologies or in working with ontology languages and tools as well as the 
personnel turnover. 

3. Process-related cost drivers relate to characteristics of the global ontology 
engineering process and their impact on the total costs. The current version 
of ONTOCOM uses two project-related cost drivers: the availability of 
tools and technology to speed-up certain phases of an ontology 
development process and the multi-site development to mirror the usage of 
the communication support tools in a location-distributed team. 

For each cost driver we specified in detail the decision criteria which are 
relevant for the model user in order for him to determine the concrete rating 
of the driver in a particular situation. For example for the cost driver 
CCPLX — accounting for costs produced by a particularly complex  
 



218 Chapter 7 
 
conceptualization — we pre-defined the meaning of the rating levels as 
depicted in Table 7-3. The appropriate rating should be selected during the 
cost estimation procedure and used as a multiplier in Equation 1. The 
concrete values of the effort multipliers have been determined during the 
calibration of the model, which is described in (Paslaru et al, 2006). Some of 
the values are depicted in Table 7-4 for exemplification purposes. 

Table 7-3. The cost driver CCPLX (complexity of the conceptualization), its rating levels and 
associated effort multipliers. 

Rating level Effort multiplier Description 

Very low 0.28 The conceptual model is a concept list 

Low 0.64 The conceptual model is a taxonomy. A high 
number of patterns supporting the creation of the 
taxonomy are available. No special modeling 
constraints are imposed through application 
requirements. 

Nominal 1.0 The model contains a taxonomical structure and 
domain properties. Again, modeling patterns are 
available, while the application setting imposes 
some simple constraints which produce additional 
modeling overload. 

High 1.36 The model contains in addition to the previous 
case axioms. By contrast the engineering team can 
not resort to a feasible number of modeling 
patterns to ease the conceptualization task. In the 
same time, the number of application-driven 
constrains increases. 

Very high 1.72 The conceptual model is an axiomatized ontology 
containing both schema and instance data. In turn, 
there are few to no modeling patterns to support 
the conceptualization task, while the number of 
application-driven constrains is considerably high. 

The decision criteria associated with a cost driver are typically more 
complex than in the previous example and might be sub-divided into further 
sub-categories, whose impact is aggregated to the final effort multiplier of 
the corresponding cost driver by means of normalized weights. 

3.4 Using the ONTOCOM model 

Starting from a typical ontology-building scenario, in which a domain 
ontology is created from scratch by the engineering team, we simulate the 
cost estimation process according to the parametric method underlying 
ONTOCOM. Given the top-down nature of our approach this estimation can 
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be realized in the early phases of a project. In accordance to the process 
model introduced above the prediction of the arising costs can be performed 
during the feasibility study or, more reliably, during the requirements 
analysis. Many of the input parameters required to exercise the cost 
estimation are expected to be accurately approximated during this phase: the 
expected size of the ontology, the engineering team, the tools to be used, the 
implementation language etc. 

The first step of the cost estimation is the specification of the size of the 
ontology to be built, expressed in thousands of ontological primitives 
(concepts, relations, axioms and instances): if we consider an ontology with 
1000 concepts, 200 relations (including is-a) and 100 axioms, the size 
parameter of the estimation formula will be calculated as follows: 

Size = 1000 + 200 + 100 / 1000 = 1, 3 (3) 

The next step is the specification of the cost driver ratings corresponding 
to the information available at this point (i.e. without reuse and maintenance 
factors, since the ontology is built manually from scratch). Depending on 
their impact on the overall development effort, if a particular activity 
increases the nominal efforts, then it should be rated with values such as 
High and Very high. Otherwise, if it causes a decrease of the nominal costs, 
then it would be rated with values such as Low and Very low. Cost drivers 
which are not relevant for a particular scenario, or are perceived to have a 
nominal impact on the overall estimate, should be rated with the nominal 
value 1, which does not influence the result of the prediction equation. 

Table 7-4. Cost drivers and their concrete values in a project 
Cost driver Effort Value Cost drivers  Effort Value 

Product-related drivers Personnel-related drivers 
DCPLX High 1.26 OCAP Low 1.11 
CCPLX Nominal 1 DCAP High 0.93 
ICPLX Low 1.15 OEXP Low 1.11 
DATA Nominal 1 DEXP Very high 0.89 
REUSE Nominal 1 LEXP Nominal 1 
DOCU Nominal 1 TEXP Nominal 1 
OE Nominal 1 PCON Very High 1.2 

Process-related drivers 
TOOL Very low 1.7 SITE Nominal 1 

 
Assuming that the ratings of the cost drivers are those depicted in Table 

7-4 these ratings are replaced by numerical values. The value of the DCPLX 
cost driver was computed as an equally weighted, averaged sum of a high-
valued rating for the domain complexity, a nominal rating for the 
requirements complexity and a high effort multiplier for the information 
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sources complexity (for details of other rating values see (Simperl et al., 
2006)). According to the formula 1 the development effort of 11.44PM 
would be calculated as follows: 

PM = 2.92 * 1. 3 * (1.26 * 1. 15 *  
1. 11 * 0. 93 * 1. 11 * 0.89 * 1.2 * 1.7) (4) 

The constant A has been set to 2.92 after the calibration of the model, while 
the economies of scale are so far not taken into consideration. 

In order to increase the quality of the produced predictions in a particular 
project or organizational setting the generic model should however be 
subject to further calibrations or even extensions and revisions based on 
local data definitions. These issues are elaborated in the next section. 

3.5 Applying the ONTOCOM model to arbitrary 
ontology engineering projects 

ONTOCOM provides a generic model for predicting the costs arising in 
ontology engineering projects. In order to increase its real-world 
applicability it should be further extended and revised according to several 
dimensions: 

• Support for the entire ontology lifecycle. The model briefly introduced 
in this chapter considers solely those projects in which ontologies are 
built manually without reusing existing knowledge resources. Cost 
drivers reflecting the impact of ontology reuse, or more generally 
knowledge acquisition, on the overall costs should be defined in order to 
cope with this limitation. A second aspect which is not addressed in the 
presented model is its usage in the target application context. With this 
respect one should extend the product- and process-related cost drivers 
with support for integration (how much does it cost to integrate the built 
ontology into its application system) and maintenance. 

• Support for alternative ontology engineering methodologies. As 
explained in Section 3.1 the generic ONTOCOM model assumes a 
sequential ontology lifecycle which contains only the most important 
management, development and support activities (Gómez-Pérez et al., 
2004). In case the model is applied to a different setting, the relevant 
cost drivers are to be aligned (or even re-defined) to the new sub-phases 
and activities, while the parametric equation needs to be adapted to the 
new activity breakdown. 

• Refinements of the parametric method. The current release of the 
ONTOCOM model addresses two issues which are an integral part of 
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the parametric method solely marginally. First, the model should further 
investigate the need and determine an appropriate value for the 
economies of scale parameter in Equation 1. This can be achieved in a 
similar manner as in classical parametric models in the software 
engineering field such as COCOMO. This popular model, as well as 
other prominent approaches for software systems seems to agree upon a 
value of around 1 for this parameter (Barker and Kemerer, 2003). 
Second, the model needs to be extended with a means to estimate the 
duration of an ontology engineering project in addition to the person 
months efforts. In adjacent engineering disciplines it has been shown 
that duration can be predicted in close relationship to development 
efforts. 

• Improvement of the prediction quality of the generic model. This can be 
achieved in several ways, which are not necessarily specific to the field 
of ontology engineering, but are related to the very nature of the 
parametric method: 
o Calibration with larger amounts of data. As the model is based on 

statistical analysis (e.g. using multi-linear regression, Bayes analysis 
or both, cf. (Paslaru et al, 2006)) its prediction quality is directly 
proportional to the number of data points used for the calibration. 

o Calibration with more accurate data. The quality of the obtained 
predictions equally depends on the quality of the collected historical 
data and on its representativeness for the present project. In this 
context calibrating the model using local data is likely to produce 
further improvements of the prediction quality.  

o Accurate input parameters: A prediction model, no matter how 
accurately calibrated, will not produce accurate values if the input 
parameters employed in the parametric equation are inexact. As the 
model is applied in an early stage of an ontology engineering 
project, it is likely that some of the required input parameters are not 
known in advance and need to be estimated by the engineering team. 
The most prominent example in this category is the size of the 
prospected ontology. In order to alleviate this problem, one could 
apply group decision methods to allow a more precise estimation of 
the size parameter. In addition, the analogy method could provide an 
alternative instrument for calculating this value. 

4. SOFTWARE AND TOOLS 

Software tools are required for various types of tasks in the context of 
cost estimation models, in particular ONTOCOM. 
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On the one side the customization of a model to particular needs 
(expressed in terms of historical project data describing these needs 
implicitly through cost drivers) should be supported by tools for data 
collection and calibration. Depending on the estimation method applied the 
data collection can be systematically undertaken through face-to-face 
interviews, or structured questionnaires in a variety of forms (from Excel to 
Word documents and online tools). The calibration of the method requires 
statistical tools to perform the regression or the Bayes analysis (Devnani-
Chulani, 1999). Figure 7-2 depicts a screenshot of the online questionnaire 
used for data collection for the ONTOCOM model.1 

 

Figure 7-2. Online questionnaire used for data collection in ONTOCOM 

Once the model can be viably applied to a project environment there is a 
need for tools which automatically calculate estimates using actual value 
inputs provided by the user. In their simplest form such tools can be 
specially designed Excel sheets or client applications with sophisticated user 
interfaces. Figure 7-3 gives an example of a tool we developed for the usage 
of the analogy method in ontology engineering. 

                                                      
1 The questionnaire is available at http://kompass.mi.fu-

berlin.de/phpESP/public/survey.php?name=ontocom2006. 
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Figure 7-3. Tool for the usage of the analogy method 

5. STATE OF THE ART AND RELATED WORK 

Cost estimation methods have a long-standing tradition in more mature 
engineering disciplines such as software engineering or industrial production 
(Boehm, 1981, Kemerer, 1987, Putnam, 2003, Stewart, 1995). Although the 
importance of cost issues is well-acknowledged in the community, as to the 
best knowledge of the authors, no cost estimation model for ontology 
engineering has been published so far. Analogue models for the development 
of knowledge-based systems, e.g., (Felfernig, 2004) implicitly assume the 
availability of the underlying conceptual structures. (Menzies, 1999) 
provides a qualitative analysis of the costs and benefits of ontology usage in 
application systems, but does not offer any model to estimate the efforts. 
(Cohen et al, 1999) presents empirical results for quantifying ontology reuse. 
(Korotkiy, 2005) adjusts the cost drivers defined in a cos estimation model 
for Web applications with respect to the usage of ontologies. The cost 
drivers, however, are not adapted to the requirements of ontology 
engineering and no evaluation is provided.  

6. SUMMARY AND CONCLUSIONS 

Reliable methods for cost estimation are a fundamental requirement for a 
wide-scale dissemination of ontologies in business contexts. However, 
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though the importance of cost issues is well-recognized in the community, 
no cost estimation model for ontology engineering is available so far. 
Starting from existing cost estimation methods applied across various 
engineering disciplines, we identify relevant cost drivers having a direct 
impact on the effort invested in the main activities of the ontology lifecycle 
and propose a parametric cost estimation model for ontologies based on the 
results. We explain how this model can be used and adapted in order to suit a 
wide range of ontology engineering projects at corporate level. 

In the near future we intend to continue the data collection procedure in 
order to improve the quality of the generic model and its customizations. 
Much work needs to be done by many people, thus we see ONTOCOM as a 
seed for an urgently needed field of research, the cost estimation for 
ontologies. Any significant improvement in this field will substantially 
facilitate the uptake of semantic technologies for industrial projects. A 
second direction of research is related to the design and development of tools 
which allow an appropriate usage of the model, be that in terms of user-
friendly applications for using the current model, or through alternative 
methods for the estimation of critical input parameters such as the size of the 
prospected ontology. 
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Chapter 8 

ONTOLOGY MANAGEMENT IN E-BANKING 
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Integrating Third-Party Applications within an e-Banking 
Infrastructure 
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Abstract: In this chapter we introduce how ontologies, semantic technologies in general, 
and Semantic Web Services in particular boost productivity in software and 
service development, by discovering new ways to extend the added value of 
applications in that domain. Two different applications have been developed 
between Bankinter, a Spanish bank with a strong innovation tendency and 
iSOCO, a leading company in the development of applications based on 
semantic technologies. We demonstrate the importance of semantic 
technologies for commercial banking applications and share experiences in 
working with ontologies and Semantic Web Services.  

Keywords: mortgage application; ontology management; Semantic Web; Semantic Web 
Services; stock brokering; WSMO 

1. INTRODUCTION 

The Internet represents a real revolution that is here to stay: Millions of 
people access the Web to extract information, do some shopping, get 
entertained or just learn. From its early stages, the Web has provided a 
magnificent opportunity for anyone: persons, businesses or communities that 
want worldwide exposure. 

However, communication between machines has not been developed 
deeply enough. The Internet currently does not allow for fluent 
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communication between machines to do anything more but searching for 
words, whereas they should be exchanging information about the 
transactions they perform. 

Overcoming, or at least lowering, existing barriers to a more efficient and 
automatic human-machine communication is at the forefront of research and 
development efforts. Although this may sound pretentious, we could be 
talking about a second revolution of the information society, just like in the 
past we knew the first and the second industrial revolutions caused by the 
steam machine and chain production, respectively. Analogously, we could 
be talking about the Internet for persons as the first revolution of the 
information society and the Internet for machines as the second one. 

Nevertheless, as it happened with the steam machine or chain production, 
scientific innovations are useless if they are not reflected in economic 
activity and society. On one hand, the Internet has a role in showing 
information to the user. On the other hand, the most frequent commercial 
activity on Internet is based on services, especially in information-intensive 
sectors, maybe as providers, as intermediaries or transporters. 

Given the online access that banks and financial institutions provide to 
their customers and business partners, banks can adopt several strategies 
regarding technology evolution. Orlikowski (1992) pointed out three 
possible roles for technology. The first one assumes that technology is a 
force external to the company with deterministic impacts on it. The second is 
a “softer” determinant and considers some moderating role of the company 
on this force. Finally, the third one sees technology as a product of shared 
interpretations or interventions. This leads us to distinguish among three 
types of banks: 

• Technological leaders. Profile: medium-size banks that focus their 
strategy on technology and consider the Internet as an opportunity to 
improve their markets. 

• Follower banks. Profile: big or medium size banks (there may be some 
exceptions) that first considered the Internet like a threat. When the 
market matured, they changed their strategy from a defensive position to 
a competitive attitude towards those who were first leaders.  

• Non believer banks. The third group of banks did not invest in Internet 
because of their small size, strategy or other reasons. However, they are 
a minority in terms of market share. 
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2. SEMANTIC WEB SERVICES FOR E-BANKING 

Bankinter, one of Spain’s leaders in the first group has always been 
aggressive in its online offerings and, consequently, is continuously looking 
for improvements. As we will argue later, ontologies and semantic 
technologies are among the most important opportunities for its strategy as 
they can significantly improve the efficiency of the processes1 in a bank. 
Processes in a bank can be classified in three categories: 

• Inter-banking processes: These processes are created to exchange 
documents and monetary entries (cheques, receipts, international and 
national transfers) between banks.  

• Processes between a bank and its providers: This refers to basic supplies 
common to any industrial sector and to information providers that are 
specific to the financial business. The setting up of such processes 
requires many resources, in some case due to the development costs and 
in others due to the necessity of using a certain amount of intelligence to 
make them compatible with the banking system. 

• Processes between a bank and its customers: This refers to product sales 
processes and the use of the services that the bank makes available 
through different channels. 

Although there is room for big improvements in inter-banking processes, 
it is in the second and third type of processes where a bank can make a big 
difference with a significant use of ontologies. The data exchange of a bank 
with its customers and providers can be automated, reducing cost and time, 
so that the bank can provide better and more complex services to its 
customers. This has been the path travelled by Bankinter and iSOCO and is 
the goal of this chapter. 

Bankinter is currently offering a free service that presents data about 
mortgages from a set of banks in Spain. Bank employees obtain this data 
manually, by browsing Web pages (when available) or by calling each bank 
to gather the information. The use of Semantic Web Services (SWS) 
technology can offer to replace the manual work and therefore improve the 
bank’s resource utilization. If business partners such as mortgage providers 
develop, deploy and expose Semantic Web Services for public use, bank 
applications can discover them and utilize them automatically, thus reducing 
the dependency on human input. 

Consequently, more services (product price comparators, information 
broker, deposits, etc.) can be offered by banks due to their low cost, since 

                                                      
1 Read process in the generic sense of communication mechanism. This is not limited to Web 

Services, for example. 
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less human interaction is required to discover and invoke new available SWS 
once the application is launched. Some of the advantages of SWS over state-
of-the-art Web service technology can be named. 

When facing standard Web Service registries, such as the Universal 
Description, Discovery and Integration (UDDI), with a large number of 
exported Web Services, the lookup (discovery) becomes a serious problem. 
There is no standard for service goals or capabilities in current Web Service 
Description Language (WSDL) which prevents automatic service discovery. 
For example, a bank offering a mortgage information Web service only for 
fixed interest rates and with a maximum period of 20 years will not be able 
(or will have many difficulties) to publish such constraints in UDDI 
registries. External parties looking for services that match those 
characteristics will not be able to know in advance whether the service is 
providing this information according to those constraints.  

When the discovered services have been defined according to a set of 
heterogeneous models, discrepancies may occur in the execution of those 
services. This is summarized as follows by Gartner Research (February 28, 
2002): ”Lack of technologies and products to dynamically mediate 
discrepancies in business semantics will limit the adoption of advanced Web 
services for large public communities whose participants have disparate 
business processes.” Thus, the possibilities of better discovery and mediation 
are the main advantages of SWS technology over current Web service 
technology in the context of the described financial application. 
Bankinter offers services to consult different kinds of stock market 
information (news, charts, index variations, stock prices), services to sell and 
buy stocks, services to send alerts and others. These services allow operating 
on the continuous stock market using a complete service delivery platform 
based on Web Service technology. 

The StockBroker prototype took advantage of the technology that has 
been developed inside the European Research Project called DIP (automatic 
service discovery, service composition and service mediation), to construct 
complex operations working on different formats and driven by the final user 
requests. It uses a natural language interface to define the user goal and to 
construct and invoke the services. In order to build an SWS based solution of 
the prototype several Semantic Web Services were developed. As the 
StockBroker prototype uses Semantic Web Services, this prototype 
contributed to one of DIP’s main goals. The application of Semantic Web 
Services as an infrastructure in real world scenarios within an organization 
and between organizations and its customers provided a use case for the use 
of WSMO (Web Service Modelling Ontology) in the description of the SWS 
involved in an application, and for the use of the SWS architecture defined 
in the context of the project.  
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The content of the chapter is structured as follows; first, we will look at 
existing standards on financial institutions and how they have been used in 
the applications developed. After that, we will provide evidence of the use of 
ontologies in e-Banking applications, highlighting lessons learned and 
making some practical remarks. 

3. REUSING EXISTING CONSENSUS 

Standardisation efforts in the banking domain are very slow. Efforts 
made by several organizations, such as the Mortgage Industry Standards 
Maintenance Organization, Inc. (MISMO) or the Society for Worldwide 
Interbank Financial Telecommunication (SWIFT), did not succeed in 
deploying standard world wide and the produced vocabularies can hardly be 
considered as references, at least in the Spanish bank domain.. Innovation-
oriented banks like Bankinter prefer creating innovative products on their 
own, so that they have some competitive advantage during a short period 
(usually around half a year) leading the way for financial institutions that 
mimic its innovations. That is, we strongly believe that a bank like Bankinter 
will adopt its own conceptual model and then, if successful, this model will 
be progressively adopted by other banks. 

This is well documented by a Forrester Research business report (2001) , 
in which the process of ontology adoption in business is explained: The 
financial domain is very dynamic, new products appear on a weekly basis 
and some of them cannot be categorised a priori. There is a high complexity 
in the current financial standards, such as IFX (International Financial 
eXchange2), and reaching agreement between different financial entities is 
difficult as well, as mentioned earlier. 

There are also strong reasons to develop a new ontology (based on 
existing ontologies and standardisation initiatives) instead of directly 
applying already existing ones: 

• In a mature market, such as the financial one, the only advantage 
competitors have is their expertise and a technology approach. 
Therefore, standardisation proposals usually result in long projects. In 
these projects, the strongest banks usually impose their own criteria on 
the rest, while small banks try to find a way to make things slightly (or 
completely) different, in order to contend where their big competitor 
cannot. In that business frame, a descriptive but not-too-complex 
ontology makes the standardization process easier and faster. It also 

                                                      
2 IFX Forum, http://www.ifxforum.org/home 
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allows each bank to model its own complexity while maintaining a 
certain degree of differentiation within a common framework. 

• Most of the existing ontologies that we have studied model the financial 
domain from a customer point of view, and do not sufficiently cover the 
internal processes that a bank must follow to deploy a mortgage contract 
or to extract information from the stock market. 

We have focused on those parts of the ontology that are applicable to our 
specific needs. The resulting ontology would cover the requirements of the 
aforementioned prototype. The ontologies we have built cover in broad 
terms the financial domain and more specifically those concepts that are 
more relevant for the application of mortgage loans and for the Stock Market 
environment and covers almost all the concepts required to semantically 
describe these markets.  

We have established relationships between all the concepts available 
from the same point of view, with special attention to the possible 
combinations of information that a stock market service can perform. 

Studying the actual standards, however, provides us with the opportunity 
to gather the necessary vocabulary in order to better model our ontology. 

• For developing semantic e-Banking applications, we tried to adapt the 
standard Interactive Financial eXchange (IFX), which is an XML-based, 
financial messaging protocol, built by financial industry and technology 
leaders, designed for interoperability of systems seeking to exchange 
financial information internally and externally. IFX is built with the 
recognition that no single financial transaction stands on its own, but is 
an integral part of the relationship among all of the communicating 
parties; a payment is not complete until a remittance is sent, an ATM 
withdrawal is not complete until a consumer’s account has been debited, 
and so forth. 

• XBRL (Extensible Business Reporting Language) is the closest standard 
to the stock market that we have found. We have analysed it to develop 
the specific Stock Market Ontology. XBRL3 taxonomy focused on 
“financial exchange of information in the reception and diffusion of the 
periodic public information (quarterly and semester information) that 
the listed societies with shares admitted to quotation must send to the 
supervisor”4. Thus, this taxonomy is used to report the periodic 
information of companies to the stock market authorities and therefore 
we have used it for reference and to pick up several useful terms. 

                                                      
3 http://www.xbrl.org 
4 http://www.xbrl.org.es/english/english.html 
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The ontologization of these standards could have been a solution, since 
the translation of XML documents to an ontology language could be 
automatized and enhanced further, in order to profit from the semantic 
expressivity of ontology languages. However, we clearly noticed, from the 
very beginning, that trying to adapt and ontologize IFX or XBRL would be a 
paramount effort (that was beyond the scope of the prototypes we were 
building). Furthermore, the target of those standards was mainly oriented to 
the exchange of messages between financial institutions and not directly 
addressing the relationship of a bank with its customers (at least not for the 
two scenarios we have foreseen: mortgage loans and stock brokerage). The 
level of IFX was too detailed for the purpose of the prototypes and would 
need extension and customization as well for the specifics of the mortgage 
loans and stock brokerage. 

Other sources we have studied and adapted include: 

• A financial ontology5 developed by Teknowledge that extends the 
SUMO (Suggested Upper Merged Ontology) upper-level ontology and 
provides some top-level terms in the financial domain. 

• Mortgage information publicly provided by Web sites from twelve 
Spanish banks, including the leaders in the mortgage market6, which are: 
BBVA7, Santander8, Caja Madrid, La Caixa9, Banco Popular10, 
iBanesto11, Patagon12, Bankinter13, Banco Pastor14, Banco Sabadell, and 
BBK. 

• To detect the most common terms used in the stock market, we have 
taken a broad vision of the market for this ontology. To make it more 
powerful, we have included in our research Spanish and worldwide 
independent stock market services (i.e.: Yahoo Finances15, Reuters16, 
Xignite17 and Invertia18), since they are increasingly used by costumers 
and, usually, offer more detailed information than banks. 

                                                      
5 http://einstein.teknowledge.com:8080/download/register.jsp?fileType=.tar&fileName=FinancialOnt.tar 
6 An unofficial ranking of Spanish banks with respect to their position on the mortgage 

market is available at http://tinyurl.com/2evmq3  
7 BBVA: http://tinyurl.com/2ds76a 
8 Santander: http://tinyurl.com/2chesp  
9 La Caixa: http://tinyurl.com/2bw72c 
10 Banco Popular: http://www.bancopopular.es/simuladores/simula.asp 
11 Banesto: http://www.ibanesto.com 
12 Patagon: http://tinyurl.com/2b3y6b 
13 Bankinter: http://tinyurl.com/267zbm 
14 Banco Pastor: http://www.bancopastor.es/d30/d3020/3020_stage2.html 
15 Yahoo! Finance: http://finance.yahoo.com/  
16 Reuters UK: http://uk.reuters.com/home  
17 Xignite: http://preview.xignite.com/ 
18 Invertia: http://www.invertia.com  
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Figure 8-1. Mind map taken in a brainstorm session with domain experts 

In our experience, the most fruitful stage of the conceptualization is when 
some ontology engineer meets with domain experts. Depending on the size 
and complexity of the Domain, we usually apply METHONTOLOGY 
(Fernández et al., 1997) or DILIGENT (Pinto et al., 2004). As a first step, 
we try to capture as much information as possible, using some tool for mind 
maps as MindManager19©, FreeMind20 or MindMeister21 (for a shared online 
conceptualization) as shown in the figure above. 

4. EDITING AND BROWSING 

As we have said, previously we have considered the use of a general-
purpose tool as a mind mapping tool for the first steps of knowledge 
acquisition, allowing a shared and distributed editing of concepts and 
relationships between the experts on the domain (usually bank employees) 
and knowledge engineers (employees from iSOCO). Once a first draft of the 
conceptualization is released, a deeper conceptualization is needed for the 
creation of the set of ontologies needed for the applications we have made. 

                                                      
19 http://www.mindjet.com. Mind Manager is a comercial solution and provides a 30 days trial 
20 http://freemind.sourceforge.net/wiki/index.php/Main_Page#Download_and_install . 

FreeMind is an free software under the GPL license. 
21 http://www.mindmeister.com/ MindMeister provides free or Premium access. It allows 

collaborative online mind mapping. 
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For that purpose, we have used a couple of tools that have proved to be 
effective and useful: Protégé22 and WSMO Studio23. The use of one tool or 
other has been decided based upon the final use of the ontologies created 
with them. For all the ontologies not directly related to Semantic Web 
Services, like those connected more to the use and exploitation of Natural 
Language Processing (NLP) needed for the applications, we have used 
Protégé because of the support it provides for formalisms such as RDF 
(Resource Description Framework) and OWL (Web Ontology Language) —
given that our suite for Intelligent Access to Information uses them. All the 
ontologies that dealt with ontology learning for banking purposes thus were 
described in RDF. Within this category, we can mention the Ontology for 
Financial Products as the main input for product recognition in the NLP 
component (Knowledge Access24). Other ontologies that were written in 
RDF within Protégé were the Semantic Pattern Matching Ontology, used to 
discover goals and further translated into WSMO Goals. 

The combination of machine-processable semantics facilitated by the 
Semantic Web with current Web Service technologies has coined the term 
Semantic Web Services. Semantic Web Services offer the means to achieve a 
higher level of value-added services by adding dynamism to the task driven 
assembly of inter-organization business logics. They have the potential to 
make the Internet a global, common platform where agents (organizations, 
individuals, and software) communicate with each other to carry out various 
activities. Semantic Web Services represent an extension to current Web 
Services technology. They broaden the Web from a distributed source of 
information to a distributed source of services (Lara et al., 2003), where 
software resources can be assembled on the fly to accomplish user goals.  

In order to allow the usage and complete integration of Web Services, 
their capabilities need to be semantically marked up, and their interfaces 
need to provide the means to understand how to consume their functionality. 
Furthermore, the exchange of documents requires describing the meaning of 
the content in a way that can be understood and communicated 
independently of some particular domain knowledge. 

                                                      
22 Protègè: http://protege.stanford.edu/ . Protègè is available as free software under the open-

source Mozilla Public License 
23 WSMO Studio: http://www.wsmostudio.org. WSMO Studio is available under LGPL 

license. 
24 Knowlegde Access Suite: http://isoco.com/en/solutions/customer.html  



238 Chapter 8 
 

 

Figure 8-2. Glimpse of the StockMarket ontology and the Jambalaya plug-in for Protégé 

WSMO25 tries to alleviate these problems by defining the modeling 
elements for describing several aspects of Semantic Web Services. WSMO 
is a formal ontology and language for describing the various aspects related 
to Semantic Web Services. It represents the backbone for the development of 
the Web Service Modelling Language (WSML26) and the Web Service 
Modelling Execution Environment (WSMX27). The conceptual grounding of 
WSMO is based on the Web Service Modeling Framework (WSMF) (Fensel 
and Bussler, 2002), wherein four main components are defined: 

Ontologies provide the formal semantics of the information used by all 
other components. Ontologies (1) are used to express goals in a machine 
processable and understandable language; (2) permit enhancing Web 
Services so they can be matched against goals; and (3) interconnect the 
different elements with each other by means of mediators.  

Goals specify objectives that a client may have when consulting a Web 
Service. They provide the means to express a high-level description of a 
concrete task.  

Web Services represent the functional part which must be semantically 
described in order to allow their semi-automated use.  

Mediators used as connectors provide interoperability facilities among 
the rest of components. Currently the specification defines four different 

                                                      
25 WSMO: http://www.wsmo.org  
26 WSML: http://www.wsmo.org/wsml  
27 WSMX: http://www.wsmx.org  
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types of mediators, which are classified in two main classes: refiners 
(ggMediators and ooMediators) and bridges (wgMediators and 
wwMediators). While refiners are used to define new components as a 
specialization of an existing one, bridges help to overcome interoperability 
problems by enabling components to interact with each other. 

Given that our applications were designed to work with Semantic Web 
Services, we have defined Ontologies, Goals, Services and Mediators in 
WSML, to be executed within WSMX. For the definition of those, we have 
used WSMO Studio, a Semantic Web Service modelling environment for 
WSMO that has been built as a set of Eclipse28 plug-ins that can be further 
extended by third parties. 

The environment of WSMO Studio allows the creation of WSMO 
concepts in two ways: 

• Using the WSMO Editor. This editor allows you to conceptually 
describe the different elements of WSMO. For each element, contextual 
information can be provided in the form of properties, capabilities in the 
form of axioms and many other things. 

• Using the Text WSML Editor. The editor supports syntax highlighting 
and extending the list of predefined WSML keywords by the user. 

 

Figure 8-3. Describing a WSMO Goal with WSMO Studio 

                                                      
28 Eclipse: http://www.eclipse.org  
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Sometimes is easier to use the form-wise structure of the WSMO Editor 
(i.e., when creating the concept hierarchy or defining the choreography 
interface), however on other occasions is wiser to write directly in the 
WSML Editor (we have found that writing axioms in the Text WSML Editor 
is the best way to finish them). 

Once you have created your WSML files describing your Ontologies, 
Goals and Services and, if needed, Mediators, you need to ground them in 
order to make them reachable. For our StockBroker application we made use 
of WSMX, the execution environment for WSMO. In WSMX, there are a 
number of components that help you to create applications and other 
elements that need to be extended in order to be used. Among the former, we 
can find the QoS Discovery and Selection component, which allows 
semantic matching of goals and services, as well as the Choreography engine 
and the Invocation component. The architecture of WSMX allows the 
creation of specific adapters to integrate an application within WSMX, by 
using the Adapter Framework. 

 

Figure 8-4. Writing an axiom using the Text WSML Editor 

As we can see above in the conceptual architecture of the StockBroker, 
and its relationship with WSMX, we will describe WSMX components and 
how they were used in our prototype.  

• Discovery: The WSMX Discovery component is concerned with finding 
Web Service descriptions that match the goal specified by the service 
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requester. WSMO descriptions of the goal represent what a user wishes 
to achieve (described in terms of a desired capability with preconditions, 
assumptions, effects and post-conditions) and is matched with WSMO 
descriptions of Web Services known to WSMX (described in terms of 
offered capabilities). The Discovery component returns a list of Web 
Service descriptions from various service providers. 

 

Figure 8-5. Integration of the Stockbroker within WSMX 

• Orchestration / Choreography. This component is responsible for 
making service compositions. A WSMX Choreography (Figure 8-5) 
defines how to interact with a Web Service in terms of messages 
exchanged by means of communication patterns. A WSMX 
Orchestration (Figure 8-5) describes how the service makes use of other 
services in order to achieve its capability. 

• Process Mediator / Mediation Process: A WSMX Process Mediator has 
the role of reconciling the public process heterogeneity that can appear 
during the invocation of Web Services. That is, it is to ensure that the 
public processes of the invoker and the invoked Web Service match. 
Since both the invoker and the Web Service publish their public 
processes as choreographies, and the public processes are executed by 
sending/receiving messages, the Process Mediator Component will deal 
with reconciliation of message exchange patterns based on 
choreography. 

• Resource Manager: This component is necessary to manage the 
persistent storage WSMO objects it will be provided with by other 
components within WSMX. The component implementing this interface 
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is responsible for storing all data. WSMO4J29 provides a set of Java 
interfaces that can be used to represent the domain model defined by 
WSMO. 

 

Figure 8-6. Testing Web Service invocation with StrikeIron Analyzer 

• Communication Manager: This component is necessary to manage the 
interaction with the system. The Communication Manager accepts the 
message and handles any transport and security protocols used by the 
message sender. The Communication Manager is responsible for dealing 
with the protocols for sending and receiving messages to and from 
WSMX. A specific e-Banking Adapter performs this work by 
connecting the StockBroker outgoing messages with the WSMX 
incoming messages. The importance of this adapter is paramount when 
integrating third party services, as you need to create specific WSML to 
XML translators for them and vice versa. For the testing of the delicate 
task of grounding Semantic Web Services, we have used a tool for 
inspecting Web Services. As one of the providers of third party services 

                                                      
29 WSMO4J: http:// wsmo4j.sourceforge.net  
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we were using was StrikeIron, we used its StrikeIron Web Service Tools 
Suite30. When using Web Services that have not been designed to work 
with your application, a smooth integration is more a myth than an 
industrial reality. For that reason, we use the StrikeIron Analyzer, jointly 
with the output of the e-Banking Adapter to test and tune the XML to the 
WSML translator. 

Our experience has told us that the integration of ontologies and other 
semantic technologies with commercial deployed services is far from the 
promised “seamless integration.” However, the results have been 
satisfactory for the goals we have in mind. There is still work to be done in 
fields like Service Grounding, that will help us to automate the connection 
between a semantically enhanced service and its mapped Web Service. 

We have opened the path for future e-Banking applications where the 
need for automation and an overall and shared vision of information is so 
important.  

5. CONCLUSIONS 

We have presented some experiences with dealing with semantic 
technologies and Semantic Web Services within the financial domain. Based 
on these experiences, we can formulate some lessons learned with regard to 
choosing the application field, implementing the technology, and analyzing 
benefits of the SWS approach. 

The e-Banking application field described in this chapter can be 
characterized by three features, which in our opinion rationalize the 
additional effort required by a solution based on SWS. Firstly, the 
environment is distributed. There are many actors involved in the process of 
offering a mortgage to the final customer or several providers in competition 
to offer their resources in the StockBroker prototype, and many information 
sources influencing the decision taking process. This feature ensures that the 
potential of semantically enhanced discovery and composition can be 
utilized. 

Secondly, the market is dynamic. The circumstances change, the products 
evolve and the partners come and go. This feature of the environment 
ensures that a one-time investment will pay off in the long term. The loose 
coupling enforced by separating goals and Web service descriptions enables 
SWS-based applications to continue working even if some of the Web 
Services used in application stop working, provided that an alternative Web 
Service can be dynamically discovered and invoked. 
                                                      
30 StrikeIron WS Analyzer: http://www.strikeiron.com/tools/tools_analyzer_windows.aspx  



244 Chapter 8 
 

Thirdly, our application field is profitable, but not mission critical. These 
two characteristics should be a general guideline for introducing new 
technologies, as the initial costs of adopting new technologies are influenced 
by the need of training the personnel, which can pay off in the longer term. 
New technologies bear risks, however, which can be minimized when they 
are deployed in an iterative process, starting with low-risk areas. With 
respect to the characteristics of markets described above, we have shown 
how SWS can bring benefit in B2B and B2C application integration 
scenarios. In the financial domain, the benefits focus on the automatic 
discovery and invocation of third party services provided by Semantic Web 
Services. We expect that with the ongoing work on these functionalities, as 
well as on composition and mediation, these benefits will be boosted further, 
so that SWS will become a common artefact in enterprise IT landscapes. 
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Abstract: Nowadays the increasing complexity of cars has become a major challenge for 
car manufacturers, especially due to the growing rate of electronic components 
and software. This trend impacts all phases of the car’s lifecycle, e.g. the 
process of testing cars and components. We describe a project from the 
automotive industry where a semantics-based approach is employed for 
improving the process of testing different configurations of cars. Here, 
ontologies serve two main purposes: (i) representing and sharing knowledge to 
optimize business processes for testing of cars and (ii) integrating live data 
into this optimization process. The ontology has been created and is now 
maintained with OntoStudio®. The ontology has been integrated into the 
internal order system of the car manufacturer to reduce the communication 
effort between the engineers for configuring test cars and to avoid 
misconfigurations of test cars. 

Keywords: applications; automotive; engineering; information integration; rules; Semantic 
Web 

1. INTRODUCTION 

The automotive industry today is moved by two main trends: the 
reduction of time-to-market, and the increasing demand for built-to-order. 
Time-to-market reflects the reduction of innovation cycles, whereas built-to-
order refers to the move from the mass production of cars to a limited-lot-
production of individual cars. Both trends require an optimization of 
processes: the manufacturing process and also earlier steps such as research, 
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development, and testing. Manufacturing and development benefit from 
close collaboration with suppliers. Thus, knowledge sharing between 
different organizations and between different departments of the car 
manufacturer is required.  

In this chapter we describe an ontology based application for configuring 
test cars of a car manufacturer. The semantic model is mainly used to make 
sure that only valid configurations are actually built. The ontology serves 
two different tasks: (i) representing and sharing knowledge to optimize 
business processes for the testing of cars, and (ii) integrating live data into 
this optimization process.  

The ontology-based application integrates legacy systems of the 
manufacturer to access up-to-date information for the test-data-analysis. This 
data is semantically enriched with background knowledge consisting of a 
complex domain ontology and inference rules. The enriched model 
accelerates the configuration of test cars and, thus, reduces time-to-market.  

The ontology and rule base were created and are now maintained with 
OntoStudio®, an ontology editor that has been developed by Ontoprise with 
five main objectives:  

1. Ease of use 
2. Ontology development supported by inferencing 
3. Development of rules 
4. Support for reuse and integration of legacy/non-ontological information 

sources  
5. Extensibility through plug-in structure 

This chapter starts with the presentation of a use case for ontology use in 
the automotive industry (Section 2). It continues with an introduction of the 
relevant features of OntoStudio and illustrates them based on the use case 
(Sections 3–5, basic modeling, reasoning support for modeling, and 
integrating legacy data) before summarizing the benefits of building 
ontology based applications for the automotive industry. 

2. CASE STUDY: CONFIGURATION OF TEST 
CARS 

Having a look at the shares of vehicle sales in US from 1970 – 2001 (see 
Figure 9-1) we observe that the big three automobile vendors (Chrysler, 
Ford, General Motors) considerably lost market shares in that time period. 
One of the reasons was that before the early nineties the quality of their cars 
compared to the competitor’s cars was very poor. Then the big three started 
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a quality offensive which resulted in a slight market gain until 1994. But 
after 1994 the big three again lost market shares. The reason for the second 
loss which lasts until today is the slow innovation in the automotive industry 
in US. The competitors in Asia and Europe have been able to strongly 
reduce the time for developing new cars. As a consequence time-to-market is 
one of the main optimization goals in the automotive industry.  

 

Figure 9-1. Market shares of vehicle sales (source: Wards automotive yearbook) 

Another very important trend in consumer oriented production industry is 
built-to-order. Built-to-order means that a product is immediately produced 
and delivered after the consumer has configured the product according to his 
wishes. With this strategy Dell edged out a lot of its competitors on the PC 
market. In contrast to that in the automotive industry cars are first developed 
and then manufactured in large amounts with a high degree of optimization. 
Very often the results are huge amounts of cars which cannot be sold and 
thus produce costs for the investment and for storing them. Finally, these 
cars must be sold with large sales discounts which again reduce the profit of 
the manufacturer. Built-to-order avoids all these problems but requires a 
severe change of logistic and business processes. Built-to-order reduces the 
mass production of cars to a limited-lot-production. Emphasis for 
optimization issues moves from the production step to earlier steps such as 
the collaboration between suppliers and manufacturers in development and 
delivering. Thus, knowledge has to be shared between different 
organizations and departments. Therefore, the main emphasis has to be put 
on optimizing these business processes. 

The scenario for this process was given by the business processes around 
the testing of cars. The car company has a fleet of test cars. These test cars 
are continuously reconfigured and then tested with this new configuration. 
Reconfiguration means changing the engine, changing the gear, changing the 
electric, i.e. changing all kinds of parts. For the changing of parts a lot of 
dependencies between these parts have to be taken into account. In many 
cases these dependencies are only known by a few human experts and thus 
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require a lot of communication efforts between different departments of the 
manufacturer, between the manufacturer and suppliers, and between 
suppliers. Very often test cars have been configured which did not work or 
which hampered the measurement of the desired parameters. So making such 
dependencies exploitable by computers allows for reducing the error rate in 
configuring test cars with a lower communication effort. This in turn 
accelerates the development of new cars and enhances the collaboration 
between manufacturer and suppliers. Thus it reduces time-to-market and 
supports the built-to-order process. 

The resulting system is based on an ontology. This ontology has two 
major objectives. Firstly it represents the terminology and the complex 
dependencies between the different car parts. These dependencies are 
represented as relationships and rules. Secondly the ontology serves as a 
mediator between data from different sources (Maier et al., 2003), especially 
to integrate up-to-date data about parts etc. from the legacy systems of the 
manufacturer.  

The ontology has been integrated into the internal order system as a 
software assistant, which helps the engineer in configuring test cars. The 
engineer asks the assistant for a reconfiguration and the system answers with 
the dependencies which have to be taken into account and the contact 
information for experts in this case. Additionally, the assistant will provide 
explanations which help the engineer to understand and validate the decision 
of the assistant. 

While in our case the ontology was used to enhance the internal order 
system the same ontology may be reused for the dynamic configuration of 
cars in a built-to-order process as well. Restrictions like “The power of the 
engine must not exceed the one of the brakes” need to be checked also 
during the dynamic configuration of cars. 

For the development of the ontology, the ontology modeling environment 
OntoStudio® was used. During the project it became clear that the following 
features were very important: 

• The ontology is the communication medium between engineers and 
knowledge engineers. It turned out that graphical means are very well 
suited for this communication process. This holds especially for complex 
knowledge representations like rules. 

• The ontology must provide immediate feedback, i.e. it is very useful to 
have it seamlessly integrated with an inference engine which evaluates 
rules and which creates answers during modeling and validates the 
model. Also, in this process the immediate feedback from the engineers 
was crucial. For complex models sophisticated means for debugging and 
analyzing the models must be provided by the ontology modeling tool. 
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• In our case a lot of information was stored and maintained in the legacy 

systems of the car manufacturer, i.e. an important part of the 
development was reengineering this information and attaching it to the 
ontology. As this data will further be maintained in the legacy systems it 
is important to access this information on a real-time basis instead of 
importing all this information into the ontology system. To be flexible 
for changes in the legacy systems even this attachment must be 
supported by graphical means. 

• For the run time system the performance of the system is crucial. The 
ontology tool should support optimization and deployment of the model. 

• Finally, the model will no longer be maintained by pure knowledge 
engineers in future. Instead, the mechanical engineers should be able to 
maintain and extend it. Thus, the tool should be intuitive enough to be 
used by them. Again, graphical means are very well suited for this issue. 

3. ONTOLOGY MODELING 

The automotive case is a very versatile modeling use case, because many 
different applications occur. A basic ontology has to be created, existing 
information has to be integrated, and the expert knowledge of the engineers 
has to be formalized in a kind of rules. Thus, the modeling process can be 
divided into four phases: 

• the analysis of the domain,  
• the construction of the ontology, 
• the integration of already existing information in the legacy systems, like 

in databases, and  
• the modeling of the expert knowledge as rules. 

This modeling process is described in the subsequent sections. 

3.1 Concepts, relations, attributes, instances 

The initial step in the modeling process (the analysis of the domain) is 
necessary to exactly define the domain, which is a challenging task because 
the domain experts in most cases do not know how to develop an ontology 
and the knowledge engineers do not have sufficient knowledge of the 
domain. To complete this task knowledge must be transferred from the 
domain experts to the knowledge engineers. 

To initiate this transfer, the OnToKnowledge methodology (Sure and 
Studer, 2002) was used, where the domain experts fill out competency 
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questionnaires, in which they describe what they expect from the later 
system and what questions it should be able to answer. The described 
expectations and stated questions provide a good basis to start the modeling 
process. Examples for the formulated questions were: 

• Is the configuration of the current test-car valid? 
• What are the errors of the configuration? 
• Which components do not match? 
• Which components are connected to the battery? 
• Are the brakes sufficient for the power of the engine? 

The domain experts provided some hundred of these domain specific 
questions, which were used afterwards to identify the key terms and 
properties such as configuration, component, engine, battery, etc. After the 
extraction of the key terms, the modeling phase started. In this step the 
ontology was formalized using OntoStudio (cf. Figure 9-2). A large amount 
of concepts was created and arranged in a subsumption hierarchy. Most of 
them were related to the different parts of the car, e.g. engine, chassis, or 
gear. 

 

Figure 9-2. An excerpt from the automotive ontology 
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Attributes have been used for the specific attributes of the different 
components. Only a small set of relations was needed to describe the 
relationships between the components, such as the containsComponent 
relation describing that one component is part of another component. 

Instances have been added temporarily for testing purposes only. All real 
instances have later been integrated from different legacy systems by using 
the integration features of OntoStudio. 

3.2 Rules 

An ontology without rules describes only simple, structural relationships 
between concepts like parts being part of components, parts being connected 
to other parts etc. More complex relationships have to be described by rules 
and constraints. It is this more complex knowledge which has to be captured 
by the ontology to help configuring test cars. In the following such 
constraints are presented: 

Constraint 1: For a given configuration the devices connected to the 
battery must match the amperage of the used battery. 

Constraint 2: For a given configuration the maximum power of the 
motor must not exceed the one of the brakes, i.e. Pmotor <= Pbrakes 

Constraint 3: For a given configuration the filter installed in a catalyst 
must match with the motor’s fuel. 

These constraints could easily be modeled by the engineers using 
OntoStudio’s graphical rule editor. It enabled the users to build complex 
rules using graphical means, thus abstracting from the concrete syntax of the 
rules. OntoStudio automatically generates the logical syntax out of the rule 
diagrams and optimizes it for execution. 

The graphical representation of constraint 1 is shown in Figure 9-3. The 
ellipses describe concepts, labeled arrows describe relationships. The 
squares represent attribute values. Thus, there is a configuration with two 
components: a battery and a component. The battery is connected to the 
component. The battery has amperage and the component has amperage and 
both are not equal. If all these conditions hold, the implication (in green) also 
holds: the configuration is flagged with an error that has two non-matching 
components. 
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Figure 9-3. Rule diagram for constraint 1 with explanation text in the bottom window. 

The experiences in this project have shown that the graphical 
representation of rules seems to be intuitive enough to serve as a 
communication medium between the knowledge engineers and the 
mechanical engineers, i.e. the domain experts understood the model to give 
valuable feed-back. 

3.3 Explanations 

If the system detects an error in a given configuration the mechanical 
engineer still needs the rationale behind it. Thus, the system should be able 
to generate explanations how it deduced this result. This problem is solved in 
OntoStudio and OntoBroker® by storing information about the inference 
process during the evaluation of rules, which can be used to generate 
explanations for the results. 

To obtain readable explanations OntoStudio integrates an explanation 
editor which allows assigning explanation patterns consisting of readable 
text for rules. For example, the bottom part of Figure 3 shows the 
explanation editor for constraint 1. The explanation text contains variables 
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(indicated by a leading “?”) which stand for instances of concepts or values 
of attributes in the rule: 

“The configuration is not correct, because the component ?aComponent 
needs amperage of ?attributeValue2 but the installed battery only 
provides amperage of ?attributeValue1”  

During the inference process the concrete values for all variables are 
recorded and, thus, an explanation is generated from this text pattern like:  

“The configuration is not correct, because the component Controller45a 
needs amperage of 95Ah but the installed battery only provides 
amperage of 70Ah”. 

Because all the dependencies of all used rules are recorded, complex 
explanations in a hierarchical form can be created to explain the full depth of 
deduction. The explanation feature is a very useful means for the mechanical 
engineers to get an insight into the reasoning and validate the model or find 
incorrect rules. 

4. REASONING FOR ENGINEERING 

While the ontology evolves and the set of axioms grows, the need to 
ensure that the ontology together with the rules describe a consistent and 
correct model of the domain increases. Especially the set of rules and their 
interrelationships are sometimes complex to survey as a whole. With rules 
two types of major problems occur: 

• Semantic errors in the rule: sometimes the engineers fail in modeling the 
intended meaning. OntoStudio provides several tools for verifying the 
ontology which are all based on reasoning: 
o The Rule Debugger enables engineers to localize errors in a set of 

rules. 
o The Analyzer allows verifying that the ontology satisfies predefined 

constraints. 
o The Regression Test Feature allows for generating and executing 

test cases. 
• Performance issues: depending on the definition, rules can severely 

hamper the performance of the resulting system. The inference engine 
OntoBroker is seamlessly integrated into OntoStudio. This strongly 
supports a prototyping approach where modified/extended models can 
immediately be executed in posing appropriate queries. This provides 
early feedback about the quality and also the performance behaviour of 
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the model. This allows measuring and displaying performance 
information and also taking counter measures via choosing different 
parameters for the inference mechanism such as optimizing the rule set 
for a specific type of queries. 

4.1 Logical foundations 

In order to provide a clearly defined semantics for the knowledge model 
of OntoStudio, its knowledge structures correspond to a well-understood 
logical framework, viz. F-Logic (cf. (Kifer et al., 1995), “F” stands for 
“Frames”). F-Logic combines deductive and object-oriented aspects: “F-
Logic [...] is a deductive, object-oriented database language which combines 
the declarative semantics of deductive databases with the rich data modeling 
capabilities supported by the object oriented data model.” (Frohn et al., 
1996). F-Logic allows for concise definitions with object oriented-like 
primitives (classes, attributes, object-oriented-style relations, instances) that 
are reflected by the OntoStudio GUI. Furthermore, it also has Predicate 
Logic (PL-1) like primitives (predicates, function symbols), that are only 
partially reflected in the GUI but internally used within the data structures. 
F-Logic allows for rules and constraints that further constrain the 
interpretation of the model. F-Logic rules have the expressive power of 
Horn-Logic with negation. 

Normal programs are Horn programs where rules may contain negated 
literals in their bodies. The semantics defined for these normal programs is 
the well-founded semantics (van Gelder, 1993). In (van Gelder et al., 1995), 
the alternating fixpoint has been described as a method to operationalize 
such logic programs. This method has been shown to be very inefficient. 
Therefore the inference engine realizes dynamic filtering (Kifer and 
Lozinskii, 1986) which combines top-down and bottom-up inferencing. 
Together with an appropriate extension to compute the well-founded 
semantics this method has been proven to be very efficient compared to 
other Horn-based inference engines (cf. e.g. (Sure et al., 2002b)). For 
detailed introductions to the syntax and the object model of F-Logic, in 
particular with respect to the implementation of F-Logic in OntoBroker, we 
refer to (Erdmann, 2001; Decker, 2002; Ontoprise; 2002). 

Our example rule from Figure 3 reads in F-Logic syntax like this: 

error(?X,?Y):error[notMatchingComponents->>{?X,?Y}] AND 
?C[hasErrors->>error(?X,?Y)]  
<- 
?C:Configuration[hasComponents->>{?X,?Y}] AND 
?X:battery[hasAmperage->>?Z1] AND 
?Y:component[connectedTo->>?X, hasAmperage->>?Z2] AND 
?Z1 != ?Z2. 
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4.2 Debugging rules 

Creating explanations and querying for answers is one way of validating 
an ontology with a complex set of rules. While this method targets the end 
users of the final system, a more flexible way for validation is needed by 
ontology engineers.  

In the automotive use case the engineers developed some one hundred 
rules expressing the dependencies of the various components with many of 
them depending on other rules. If a query is not returning the correct result, 
this linkage to many rules makes it hard to determine which of the rules 
actually is the real cause of a wrong result. Thus, the engineers need tools 
that can show the linkage between the rules and that enable them to 
investigate the query evaluation process to observe the rules step by step to 
identify the rule that is not modelled properly.  

For these purposes OntoStudio includes a debugging environment that is 
aligned to the intuitive process of debugging ontologies. Ontology engineers 
debug queries in an iterative process: 

1. Analyze the rule dependencies, i.e. the rule graph. 
2. Execute the query/rule body partially to find the part that is not returning 

the expected results. 
3. Detect whether (a) basic facts are missing, or (b) another rule does not 

infer the expected information. 

Thus, the debugging process resembles a drill down process starting at 
the query looking for the results and then drilling down into rules delivering 
partial answers, etc. This interactive process is supported by OntoStudio’s 
Rule Debugger, which is shown in Figure 4. It contains a visualization of the 
rule dependencies in the upper left corner, where the user can see whether all 
rules that should be involved in the execution of the query are correctly 
involved. If a rule is missing in the rule graph, then the rule does not match 
the other rules, which might be the cause of the problem. 

If all rules are contained in the rule graph, one rule probably does not 
return the values that are intended. To find this rule, the debugging 
component allows for the partial execution of the query and rule bodies. The 
intuitive way to find the defective rule is to remove some conditions in the 
rule body to find out which conditions are not working. The component for 
the partial execution of the rule bodies is shown in the upper right part of 
Figure 9-4. 

If the condition is found, it has to be checked whether instance 
information is missing or whether another rule that should infer information 
matching this condition is not working properly. In the latter case this rule 
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has to be analyzed in the same way. Iterating these steps finally will 
determine the defective rule. 

 

Figure 9-4. Rule debugging in OntoStudio 

4.3 Analyzing ontologies 

Guidelines for ontology modeling help to ensure coherent ontologies and 
thus a consistent level of quality. Support for testing the guidelines 
inherently enhances the quality of collaboratively created models (Sure et 
al., 2002a).  

Integrating guideline checking into ontology engineering environments 
helps to evaluate the guidelines during modeling time and guarantees 
immediate feedback for ontology engineers. From our experiences with 
ontology development and deployment we learned that for different purposes 
ontologies must have different properties, e.g. for different target 
applications (Lau and Sure, 2002; Sure and Yosif, 2002; Davies et al., 2003).  
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Therefore, a flexible way of using and adapting guidelines is needed 
instead of hard coding them. Guidelines might be used for technology-
focussed evaluations, e.g. to ensure that naming conventions are fulfilled (for 
instance, some inference engines do not allow for white spaces in concept 
identifiers while others accept them), or for ontology-focussed evaluations. 
The definition of evaluation methods for such properties must be very 
flexible and easily maintainable. So it is not convenient to hard code it into 
the Ontology Engineering Environment itself. 

The OntoAnalyzer plug-in offers this flexible and modularized checking 
of formalized guidelines and constraints by making use of inferencing 
capabilities. Logic is a very comfortable and powerful way to express 
constraints on a conceptual level. For that purpose, the rule or constraint 
language must be able to access the ontology itself, i.e. to make statements 
about classes, relations, subclasses etc. This is possible with F-Logic, e.g. we 
can formulate that a concept has at most one super-concept with the 
following constraint: 

! ?C :: ?S1 AND ?C :: ?S2 -> ?S1 == ?S2 

Further examples for modeling guidelines can be derived from (Noy and 
McGuinness, 2001). OntoAnalyzer is a tool which applies such constraints 
to an ontology. It may be loaded with different constraint packages for 
different purposes. Again, reasoning is used to actually execute the 
constraint checking. 

In the automotive use-case multiple users were involved in the modeling 
process. In multi-user scenarios it is hard to ensure that the whole model is 
consistent with respect to guidelines regarding modeling style or ontology 
structure. In the automotive use-case a project-specific set of guidelines was 
developed at the beginning of the modeling process. This set was integrated 
as constraints into OntoAnalyzer and enabled engineers to verify the 
consistency of the model at any time. 

4.4 Regression tests 

During the project, a large knowledge base was developed containing 
many concepts, instances and rules. The larger such a model grows, the 
higher is the impact of changes on the model and the rules. During the 
project many changes were applied to the ontology and the rules. Concepts 
were removed, new ones were added, and the underlying instance base was 
changed. Additionally, the rules had to be adapted to these changes. The 
engineers were confronted with the problem, that changes to the model by 
other engineers influenced the results of their own rules. Additionally 
created rules sometimes resulted in wrong results as well. Thus, it became a 
hard task to ensure the stability of the ontology while the ontology evolved. 
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A fairly simple but feasible approach for this problem is the creation of 
regression tests. Regression tests are similar to unit tests in Java. These test 
cases contain a query that shall be evaluated and the results that have to be 
returned. By running the query and comparing the returned results with the 
results stored in the test case, the user can easily check the correctness of the 
current results.  

During the project the engineers developed many test cases covering the 
whole ontology and all rules. For every newly defined rule at least one test 
case was created. The test suite containing all these regression tests was run 
regularly to be able to detect failures in the model early. This enabled the 
engineers to ensure the stability of the ontology and the correctness of the 
modelled rules during the lifetime of the project. 

OntoStudio supports this process by providing graphical means for the 
definition of these regression tests. New regression tests can be created with 
a single click and single tests or whole test suites can be run with a single 
click. If a test fails, the results are interpreted and the differences in the 
results are highlighted. 

5. INFORMATION INTEGRATION 

A major source for the automotive ontology is the parts breakdown 
which is available from a database. For a car around 100,000 parts are stored 
in such a list. In various workshops, appropriate generalizations of the parts 
were discussed with the engineers, which finally resulted in the ontology. 
Although the ontology was developed from scratch, it had to be in sync with 
the information in the databases.  

Ontologies and schema information are relatively stable over time. In 
contrast, the data in databases can change quite frequently. Usually, 
operational systems depend on both, schemas and access to current data. 
This raises a couple of questions and challenges, e.g. regarding the 
connectivity and the lifecycle of ontologies. In the context of semantic 
information integration, legacy resources might be wrapped locally, while 
the resulting semantic layer is to be deployed as a service for external access. 
This allows departments, etc. to publish “their” models in a service-oriented 
manner. 

Ontology servers need to offer integration capabilities as well as a 
transport layer for distributed models. Engineering environments need 
support for lifecycle aspects (e.g. versioning) as well as management 
capabilities for distributed ontologies (storage, registry, etc.). The 
OntoBroker inference server provides a couple of functionalities for the 
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distributed development and application of ontologies. This includes a Web 
service-interface, a schema-connector and a schema-import for ontologies. 

5.1 Information sources for ontology contents 

Besides serving as a common communication language and representing 
expert knowledge in our scenario, ontologies serve as an integration means 
of different legacy systems. The ontology is used to reinterpret given 
information sources in a common language and thus provides a common and 
single view to different data sources. 

In our scenario the components data and the configuration data stems 
from different departments and different information sources like CAD-, 
CAE- or CAT-systems or ERP/PPS-applications and databases. All these IT 
systems accompany the whole PLM-process, beginning with the product 
design and ending with the product release. Our test configuration system, 
and thus our ontology system must access this live information to be up-to-
date, to avoid inconsistent data and to avoid additional effort.  

An ontology could now catch up with these different sources and 
integrate them in a common logical model. This goes much beyond building 
just connectors between applications. The goal of integration is to 
consolidate distributed information intelligently without redundancy and to 
provide users and applications with easy means to access information 
without considering the underlying heterogeneity of data structures and 
systems. 

In our case, we already have such a commonly accepted logical model: 
the automotive ontology. This ontology describes schema information and is 
not yet populated by instances, which means that there exists a concept e.g. 
motor with attributes name, cylinders, fuel type etc. but there is no 
information about actual motors like TDI V6, with 6 cylinders, fuel type 
super etc. This information is provided by attaching the ontology to one or 
more of the existing information sources. In the following we present an 
example connection to a relational database. 

5.2 Database schema import 

The first step to connect an ontology to a database is importing the 
database schema and visualize it in the ontology management environment. 
The import schema results in a new ontology in which the database tables 
are represented as concepts and the columns as attributes and relations. In 
addition to relational database schemas OntoStudio can also import other 
schemas like RDF or OWL. In our example we will show how to integrate 
the database table motor with the ontology. The database table is displayed 
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in Figure 9-5. It contains information about motors like the fuel type, power 
etc. 

 

Figure 9-5. Database table “Engine” 

5.3 Database mappings 

After importing the database schema, the ontology and the schema can be 
connected. OntoMap, a mapping tool included in OntoStudio, supports the 
fundamental mapping types (i) table-to-concept mapping, (ii) attribute-to-
attribute mapping, (iii) attribute-to-concept mapping, and (iv) relation-to-
relation mapping. 

 

Figure 9-6. Visualized mappings within OntoStudio 



9. Ontology-based Knowledge Management in Automotive Engineering  261
 

Figure 9-6 shows the imported database schema in the left tree-view and 
the target ontology in the tree on the right hand side. A table-to-concept 
mapping connects the table engine to the concept motor and, additionally, an 
attribute-to-attribute mapping from id in the database to name in the 
ontology. This means that every row in the database corresponds to one 
object in the ontology. OntoStudio automatically creates a connection to the 
database via the dbaccess-connector (there are various connectors for all 
kinds of information sources available). This connector automatically creates 
unique object IDs and is used in rules to retrieve data from the database and 
make it available via the mapping to the ontology: 

?X:Motor[name->?NAME,  
        maximum_power->?MAXIMUM_POWER, 
        volume_flow->?VOLUME_FLOW,  
        fuel_type->?FUEL_TYPE] 
 <- 
dbaccess("engine",?X,  
     F("id",?NAME, "absolute power", ?MAXIMUM_POWER, 
     "volume_flow", ?VOLUME_FLOW, "fuel", ?FUEL_TYPE), 
     "mssqlserver2000", 
     "database_motor", 
     "server_motordata:1433"). 

Another important mapping type is the mapping of attributes to concepts. 
It implies that attribute values become unique IDs for ontology instances, 
e.g. mapping the ID of engine to the concept motor creates an object for 
every different ID in the database. Thus, information about one object which 
is spread across different rows (or tables or even different sources) can 
always be identified by the same ID and, thus, linked together. In the use 
case, information about parts had to be integrated from many different 
sources to yield a consistent and complete part list for the testing scenario. 

A query to the integration ontology is, thus, translated at real-time (via 
the mapping rules) into calls for appropriate built-ins which access the data 
sources (in case of an RDBMS via SQL queries) and translate the answers 
back into F-Logic. Thus, a user or an application using the ontology only 
needs this single ontology view and a single vocabulary to retrieve all 
necessary information. In our scenario different information sources 
contribute to the same ontology. E.g. information about electronic parts is 
stored in other databases than information about mechanical parts. 
Information about the 3-D geometry of objects is separated from their 
mechanical properties etc. 

It is clear that in practice the different information sources contain 
redundant or even inconsistent information. For instance in our scenario car 
types have not been represented in a unique way. The assignment of 
properties to car types has been described with different keys for one and the 
same car type, e.g. keys like A3/A4 have been used to describe common 
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properties of two car types while unique properties have been assigned to the 
car type by a key A3. We again use rules and thus inferencing to solve such 
integration problems.  

?X:Car[carType->?Type, has_part->?Part] 
<- 
dbaccess("car",?X,  
    F( "id", ?T, "part", ?Part), 
    "mssqlserver2000",  
    "car database", 
    "server:1433") AND  
    tokenize(?T, ”/”, ?Type). 

This rule retrieves information from the database via the dbaccess 
predicate but processes the result by extracting the type information from the 
ID via another predicate (tokenize which extracts A3 and A4 separately from 
A3/A4).  

Due to the schema import and the mapping rules, the automotive 
ontology is always populated with the up-to-date instances from the legacy 
systems. If the inference server is queried for some information (according 
to the ontology) it results in a set of online (SQL-) queries to the relational 
databases, thus, serving two important needs: (i) a rich, adequate conceptual 
model, and (ii) access to the most recently available data. 

6. CONCLUSION 

The main role of OntoStudio as an Ontology Engineering Environment is 
the provision of means to create, modify and navigate ontologies. The 
modeling of the engineers resulted in an ontology with around 300 concepts, 
around 200 rules and around 80 explanations. One person-year was spent to 
develop this ontology and to integrate a first prototype of the application into 
the internal ordering system of the car manufacturer. Feedback from the 
domain experts shows that the notion of ontology is well understood and the 
expressiveness of ontologies is appropriate for the modeling task at hand. 

Essentially rules represent the main knowledge source in the models. The 
graphical representation and the support given by the system really help 
authoring rules. It turned out that the complex dependencies between 
different car-parts needed to specify constraints could be expressed with 
rules. 

The close integration of the reasoner in the modeling environment esp. 
via the testing and debugging facilities helps to bring the knowledge base to 
life, which is great feedback for users to foresee the system’s behaviour 
before actually deploying it. 
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Ontologies were quite successful in integrating different information 
sources about the configurations and parts of cars which is used to 
automatically configure test cars. This reduces the communication effort 
between the mechanical engineers, and reduces the error rate in configuring 
test cars. 

The resulting application, a test car configuration assistant, is based on 
our ontology run-time environment and inference engine OntoBroker which 
is based on F-Logic. The assistant embodies the created ontologies and rules, 
together with the connected legacy sources and accelerates the configuration 
of test cars for our customer and, thus, accelerates the development of new 
cars, which finally reduces the time-to-market. 
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Abstract: This chapter summarises findings from CODRIVE1, a large-scale ontology 
project in the vocational training domain. This competency area is complex, 
and in order to achieve proper interoperability on the basis of ontologies, all 
involved stakeholders must participate in interorganisational ontology 
engineering. In particular, this chapter illustrates the DOGMA-MESS 
methodology, a community-driven approach to ontology management. It 
presents practical experiences for the issues addressed in the previous chapters, 
complementing them with illustrative data and hands-on knowledge.  

Keywords: competency modelling; case study; context dependency management; 
interorganisational ontology engineering; ontology; ontology engineering 

1. INTRODUCTION 

Interorganisational ontology engineering (IOO) concerns different 
organisations that collaboratively build a conceptual common ground of their 
domain. Ontologies are instrumental in this process by providing formal 
specifications of shared semantics. Such semantics provide a solid basis for 
defining and sharing (business) goals and interests, and ultimately for 
developing useful collaborative services and systems.  

                                                      
1 http://www.codrive.org 
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Obtaining context-independent ontological knowledge, however, is very 
difficult, sometimes even impossible as most organisational ontologies used 
in practice assume a context and perspective of some community (Edgington 
et al., 2004). Taking this in consideration, it is natural that ontologies co-
evolve with their communities of use, and that human interpretation of 
context in the use and disambiguation of an ontology often plays an 
important role. We aim to augment human collaboration effectively by 
appropriate technologies, such as systems for context dependency analysis 
and negotiation (see also Chapter 5 of this book) during elicitation and 
application of ontologies for collaborative applications. 

In order to make this context-driven co-evolution scalable, it is crucial to 
capture relevant commonalities and differences in a gradual process of 
meaning negotiation (de Moor, 2005) in order to reach the appropriate 
amount of consensus. It is important to realize that costly alignment efforts 
should only be made when necessary for the shared collaboration purpose. In 
order to effectively and efficiently define shared relevant ontological 
meanings, clear focus and context are indispensable. 

1.1 Competencies as tacit knowledge  

In the human resources domain, the (currently) smallest and most 
important element we can identify is a (human) competency. Competencies 
describe the skills and knowledge individuals should have in order to be fit 
for particular jobs. Especially in the domain of vocational education, having 
a central, shared competency model is becoming crucial in order to achieve 
the necessary level of information exchange, and in order to integrate the 
existing information systems of competency stakeholders (e.g., schools or 
public employment agencies). However, none of these organisations have 
successfully implemented a company-wide “competency initiative,” let 
alone a strategy for interorganisational exchange of competency related 
information.  

For processing purposes, a competency is supposed to be measurable; 
therefore it is crucial to define it very precisely. Knowledge artefacts are 
usually induced bottom-up from data or deduced top-down from domain 
experts, existing schemas and/or upper ontologies.  

Competencies, however, are typical examples of knowledge that is 
merely acquired through experience. This is called tacit knowledge (Nonaka 
and Takeuchi, 1995). Polanyi (1967) used the phrase “we know more than 
we can tell” to describe what he meant by tacit knowledge. Tacit knowledge 
is a kind of knowledge which is difficult to articulate with formal language 
because it is either too complex or simply because it is informally 
internalised in domain experts’ minds. Yet it is shared and exchanged in 
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normal social interaction. Furthermore, if we suppose that tacit competency 
knowledge took an explicit form (e.g., in written documents), a new problem 
arises: As there currently exists no standard for the representation, the 
interpretation of such knowledge would require reflection among 
individuals, which is subjective and ambiguous, hence useless for machine 
processing. In such cases, the added value of eliciting ontologies through 
externalising tacit knowledge from domain experts, rather than elicitation via 
trained knowledge engineers, is considered increasingly important (Nonaka 
and Takeuchi, 1995; Diaz, 2005).  

1.2 A real world case study: the Dutch bakery domain 

This chapter summarises findings from CODRIVE, a large-scale 
ontology project in the area of competencies. CODRIVE aimed at 
developing a new competency-driven approach to knowledge in vocational 
education. One goal of this approach was to increase the interoperability of 
knowledge services between Learning Content Management Systems and 
public employment service applications. The approach is based on 
consensual meaning negotiation in the vocational training and public 
employment domain. 

The project consisted of two phases, namely the elicitation and 
application of a “Vocational Competency Ontology.” The first phase 
involved the elicitation of an ontology to describe the Dutch bakery domain. 
Two key issues could be identified. First, scalability, since the number of 
stakeholders in this domain is very large, including representatives (e.g., 
bakers, teachers) from several bakery organisations in the Netherlands. 
Second, terminological specificity, because the knowledge is very specific 
and — as usual — unknown to knowledge engineers, even at the linguistic 
level. 

The second phase of the project considered applying the ontology to 
solve the so-called gap analysis problem. Its solution should facilitate 
matching between competencies, learning objects, and tests. Without the 
ontology, this would require linking competencies to learning objects and to 
tests, as well as learning objects to tests. This would lead to a combinatorial 
explosion of the number of links, which would be hard to manage. The 
scalability would degrade even further when considering the continuous 
evolution of the knowledge artefacts involved. The particular problems 
encountered in the application phase in the project, however, are beyond the 
scope of this chapter.  

This chapter is organised as follows: in Section 2, we give a description 
of our used approach to interorganisational ontology engineering. Next, in 
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Section 3, we present our use case experiences related to previous 
theoretical chapters. Finally, in Section 4, we conclude with a discussion. 

2. INTERORGANISATIONAL ONTOLOGY 
ENGINEERING 

In our case study we adopted the DOGMA2 ontology engineering 
approach. The community layer is provided by the DOGMA-MESS3 
methodology, which is based on the generic model for collaborative 
ontology engineering, earlier discussed in Chapter 5. 

2.1 DOGMA 

DOGMA (Spyns et al., 2002, Jarrar et al., 2003, De Leenheer et al., 
2007) is an ontology approach and framework that is not restricted to a 
particular representation language. The approach differs from traditional 
ontology approaches in that (i) it is grounded in the linguistic representations 
of knowledge and (ii) it explicitly separates the conceptualisation (i.e., 
lexical representation of concepts and their inter-relationships) from the 
axiomatisation (i.e., semantic constraints). The goal of this separation, 
referred to as the double articulation principle (Spyns et al., 2002), is to 
enhance the potential for re-use and design scalability. This principle 
corresponds to an orthodox model-theoretic approach to ontology 
representation and development. 

Conceptualisations are materialised in terms of lexons. A lexon 
represents a plausible binary fact-type and is formally described as a 5-tuple 
<C, term1, role, co-role, term2>, where C is an abstract context identifier, 
lexically described by a string in some natural language. Intuitively, a lexon 
may be read as “Within the context C, term1 may have a relation with term2 
in which it plays a role, and conversely, in which term2 plays a 
corresponding co-role.” 

2.1.1 Language versus conceptual level 

Another distinguishing characteristic of DOGMA is the explicit duality 
(orthogonal to double articulation) in interpretation between the language 
level and conceptual level. The goal of this separation is primarily to 
disambiguate the lexical representation of terms in a lexon (on the language 

                                                      
2 acronym for Developing Ontology-Grounded Methods and Applications 
3 acronym for Meaning Evolution Support System 
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level) into concept definitions (on the conceptual level), which are word 
senses taken from lexical resources such as WordNet (Fellbaum, 1998). The 
meaning of the terms in a lexon is dependent on the context of elicitation (De 
Leenheer and de Moor, 2005). 

For example, consider a term “capital.” If this term were elicited from a 
typewriter manual, it would have a different meaning (read: concept 
definition) compared to when elicited from a book on marketing. The 
intuition that a context provides here is: a context is an abstract identifier that 
refers to implicit and tacit assumptions in a domain, and that maps a term to 
its intended meaning (i.e. concept identifier) within these assumptions (Jarrar 
et al., 2003).  

2.1.2 Context dependency types 

In (De Leenheer and de Moor, 2005), we distinguished four key 
characteristics of context: (i) a context packages related knowledge: it 
defines part of the knowledge of a particular domain, (ii) it disambiguates 
the lexical representation of concepts and relationships by distinguishing 
between language level and conceptual level, (iii) it defines context 
dependencies between different ontological contexts and (iv) contexts can be 
embedded or linked, in the sense that statements about contexts are 
themselves in context. Based on this, we identified three different types of 
context dependencies within one ontology (intra-ontological) and between 
different ontologies (inter-ontological): articulation, application, and 
specialisation.  

Context dependencies provide a better understanding of the whereabouts 
of knowledge elements and their inter-dependencies, and consequently make 
negotiation and application less vulnerable to ambiguity, hence more 
practical. 

2.2 DOGMA-MESS 

Where in the DOGMA methodology efficient and relevant ontology 
engineering was central, the DOGMA-MESS methodology builds further on 
these principles and extends them by supporting interorganisational 
knowledge elicitation and negotiation grounded in communities of use. It is 
based on the model for interorganisational ontology engineering (IOOE) 
described in Chapter 5, and also follows the upward spiral knowledge 
elicitation process. The main focus lies on how to capture relevant 
commonalities and differences in meaning by supporting domain experts in 
an efficient way by assigning them scalable knowledge elicitation tasks. 
Differences are aligned insofar necessary through meaning negotiation. 
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Figure 10-1 illustrates this: DOGMA-MESS was conceived with different 
actor roles and layers in mind. The arrows in the diagram indicate different 
types of dependencies between ontologies that constrain the possible 
relations between entities and their context. An ontology that is context-
dependent on another one is called a contextualisation. Hence, the 
contextualisation of ontological definitions might be constrained in different 
ways. In the following three subsections, we will first explain the roles and 
the layers, followed by some detail about the process. 

 

Figure 10-1. DOGMA-MESS meaning layers 

2.2.1 Roles 

DOGMA-MESS was designed to allow proper and scaleable 
interorganisational ontology engineering (IOO) in communities of practice. 
One of its main goals is empowering domain experts to be involved in the 
ontology engineering process. As this is a complex process, consisting of 
many different and complex macro- and micro-processes, it is clear that a 
suitable distribution of complexity is needed. In DOGMA-MESS, we divide 
the problem into more manageable sub-problems and assign them to three 
different user roles, the Knowledge Engineer (KE), the Core Domain Expert 
(CDE), and the Domain Expert (DE).  

• In more traditional approaches (e.g., the single-user ontology 
engineering process model in chapter 5), the Knowledge Engineer (KE) 
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is responsible for creating (and maintaining) knowledge in a formal way. 
He collects knowledge through cost- and time-consuming interviews 
(including those for validations and eliminating remaining ambiguities) 
with domain experts. In DOGMA-MESS, the KE is at the outer 
boundaries. He defines the system support (e.g., the exact tools, the 
internal workings, etc.) and the high-level work artefacts (e.g., the Meta 
Ontology). He assists the other DOGMA-MESS actors by tutoring them 
in the system, and by analyzing the collected content. 

• The Core Domain Expert (CDE) is a domain expert who is recognised as 
an authority in the domain (e.g., through extensive experience). He is 
connected with the relevant people involved to whom he can issue 
detailed requests. He is able to reason about his domain in a more 
abstract way, and is assisted by the KE in the higher complexity of 
working at a more generic level (e.g., template construction). The CDE 
defines the edges of the domain, introducing a necessary (but 
manageable) amount of structure to the field (templates and type 
hierarchy). He represents the common interest related to the community. 

• The Domain Expert (DE) represents a certain organization (or 
community). He deals only with domain-specific complexity, namely 
defining in his owns words how he perceives his part of the domain. In 
this process, he is both limited and guided by the structure imposed by 
the KE and by the CDE. The CDE can assign clear tasks in order to 
guide his Domain Experts in their elicitation. 

2.2.2 Layers 

DOGMA-MESS consists of four layers, with interlinking dependencies 
to impose a supporting structure. Each layer is governed by a certain actor 
role. 

• A (permanent) Meta-Ontology (MO) is the same for all applications, 
hence is pre-installed in DOGMA-MESS. It only contains stable4, hence 
reusable, cross-domain concept types like ‘Actor,’ ‘Object,’ ‘Process,’ 
and ‘Quality.’ The Meta-Ontology also contains a set of core canonical 
relations, based on the ones described in (Sowa, 1984), such as the 
‘Agent,’ ‘Object,’ and ‘Result’-relations. This layer is governed by the 
KE. 

                                                      
4 Although considered permanent and stable in this chapter, we do not exclude the possibility 

this meta-ontology would evolve over time, although to a lesser extent than organisational 
ontologies, possibly implying considerable effects on the system. We omit this discussion 
further as it is beyond the scope of this chapter. 
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• Each domain (in our case the Dutch bakery domain) has its own Upper 

Common Ontology (UCO), and is maintained by the CDE. It grounds, 
articulates and organises the (evolving) domain-common concept types 
in its own Upper Common Concept Type Hierarchy, which is a 
specialisation of the concept type hierarchy of the Meta-Ontology. 
Domain canonical relations specialise core canonical relations in the 
context of the domain. For instance, whereas ‘Agent’ is a core canonical 
relation, in a particular domain this may be translated into ‘Person.’ The 
most important type of construct in the UCO is the template. A template 
describes a commonly accepted (i.e. agreed) knowledge definition and 
acts as an incentive for further relevant knowledge elicitation steered by 
the current common goals and interests. 

• In the Organisational Ontology (OO) layer, templates are specialised 
into Organisational Specialisations by the DEs representing the various 
organisations. To this purpose, domain experts can introduce concept 
types local to their organisation. The concept types in the Organisational 
Concept Type Hierarchy themselves must specialise the actual concept 
types in the Upper Common Concept Type Hierarchy. 

• The most important layer for meaning negotiation is the Lower Common 
Ontology (LCO). This is where the target agenda as represented by the 
UCO and the (often widely differing) organisational interpretations need 
to be aligned, and the most relevant conceptualisations for the next 
version need to be selected. The alignment is done by negotiation 
between the CDE and the (relevant) DEs. 

2.2.3 Process 

In DOGMA-MESS, ontology engineering is divided in several versions, 
whereby each version has a part of the domain as its focus. At the beginning 
of each version, the CDE defines templates that best capture the focus 
interests of that moment. They are described using concepts from the UCO 
type hierarchy. When the templates are ready, the CDE assigns tasks to the 
DEs, asking them to define their organisational specialisations. The DEs 
build these definitions from concepts in their organisational hierarchy. They 
can manipulate their hierarchy as they see fit, as long as it specialises the 
UCO hierarchy. The result of this step is divergence of knowledge. In order 
to obtain the necessary convergence, the CDE and the DEs perform meaning 
negotiation on relevant differences. The resulting agreement is stored in the 
LCO. Any disagreement is left as an organisational difference to be tackled 
in the next version. This last step marks the end of a version, and all relevant 
knowledge to be retained is moved to the first step of the next version. 



10. Ontologising Competencies in an Interorganisational Setting 273
 
3. EXPERIENCES 

In this section we report on the ontology elicitation sessions we have 
carried out in the bakers’ domain using our approach and tools. 

3.1 Editing and browsing 

The layered and role-based approach of DOGMA-MESS allows the 
communities to create and maintain their domain description in small, 
understandable chunks, or units of knowledge (e.g., templates).  As a result, 
we were able to provide several ways of targeted editing and browsing 
functionalities configured for each particular type of user role.  

3.1.1 Core Domain Expert (CDE) 

The CDE manages the common part in his domain, i.e., the Upper 
Common Ontology. He does this by browsing and editing his common types 
in the upper common concept type hierarchy and his templates in the UCO. 
Figure 10-2 illustrates the introduction of a new term in the upper common 
ontology, which involves both editing and browsing. 

Browsing the type hierarchy: The CDE browses the upper common 
type hierarchy by scrolling through a drop-down box. The hierarchy level of 
a type is indicated by the indentation, where higher-level types are preceeded 
by less white space. The abstract type ‘T’ is always at the top of the type 
hierarchy. The use case type hierarchy contained about 200 concept types 
and contained only single inheritance. Note that the used approach might 
prove cumbersome with larger hierarchies or those with multiple inheritance. 

Introducing a new term: This activity includes language grounding and 
lexical disambiguation by articulating a term and setting its genus (e.g. add 
“oven” and make it a subtype of “tool”). For editing the type, one selects the 
term for the type one will edit from the scroll-down box, and either (i) 
renames the type; (ii) rehooks the type to another supertype; (iii) creates a 
new subtype below the selected type by typing the term for the new type; or 
(iv) removes the selected type. Removing a type is currently only possible if 
it is a leaf in the hierarchy. 

Logging the changes: When the CDE has finished editing, a new version 
is created and the change log is recorded in which he can annotate his 
change with some plain text comment. This comment will help him (and 
others) to understand and track all changes to the type hierarchy. 
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Figure 10-2. Editing the type hierarchy5 

Managing templates: The CDE can browse and edit the templates that 
are used in his domain. Browsing is done by showing the CDE a list of the 
templates in his domain, described by metadata (including author, title, date, 
and comments). By clicking on one of these templates (or by creating a new 
one), the CDE enters the edit screen, which is partially displayed in Figure 
10-3. In this step, he applies a concept type by specifying it with differentiae. 
When he commits a new template, an application dependency between the 
template and the concept is defined (De Leenheer et al., 2007; pp. 42). 

The top part of Figure 10-3 displays the template in a visual format. The 
edit options are displayed at the bottom. From the first drop-down box, the 
CDE first selects a concept, which corresponds to a concept in the depicted 
graph. He then chooses one of three actions: (1) replace the selected concept 
by another concept from the type hierarchy (in his domain), (2) add another 
differentia by selection of a relation and a concept from the type hierarchy, 
or (3) remove the concept type from the template. He can then save his 
changes by providing a name for the template, adding some change 
comments and pressing the save button (not displayed in this figure). 

                                                      
5 All images used in this chapter display content as it was produced in the use case. We chose 

to keep the original Dutch labels in order to preserve authenticity and nuance. We will 
explain figures by an English equivalent term, followed by the Dutch representation in 
between brackets. In this example, the CDE is changing the supertype of Oven (“Oven”) 
to Equipment (“Apparatuur”). 
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Figure 10-3. Editing the subtask (“Deelhandeling”) template6 

Managing common definitions: The CDE can manage the common 
definitions (based on templates and the organizational definitions) in the 
LCO. The steps are similar to those of the managing templates activity. 

3.1.2 Domain Expert (DE) 

The Domain Expert manages his local organisational ontology. He does 
this by browsing and editing his organisational types (similar to the CDE 
activities) in the Organisational Type Hierarchy and his specialisations in the 
Organisational Specialisations.  

                                                      
6 The displayed template is the Subtask template (“Deelhandeling”), which states that a 

Subtask (“Deelhandeling”) results in (“resulteert_in”) a certain Product, which has a 
quality demand (“kwaliteitseis”) of Quality[0] (“Kwaliteit[0]”). The Subtask is performed 
by (“uitgevoerd_door”) a certain Person (“Persoon”), uses (“gebruikt”) a certain Material 
(“Materiaal”), a certain Device (“Apparatuur”), a certain Equipment (“Gereedschap”) and 
a kind of Raw material (“Grondstof”). The Subtask (“Deelhandeling”) itself has a quality 
demand (“kwaliteitseis”) of Quality[1] (“Kwaliteit[1]”). 
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Managing definitions: A typical DE activity is building an 
organisational definition based on a certain template. The editing of a 
definition is always constrained by the template as this action corresponds to 
the micro-process specialisation. For instance, if the template specifies a 
concept “Actor” at a certain position, it is illegal to fill this position with an 
“Object” type such as “Oven.” This constraint is enforced using the 
conceptual graphs projection operator (Sowa, 1984). We found that it is 
easiest for the user to constrain editing to allowed choices. 

 

Figure 10-4. Definition of “Fonceren” as a specialisation of the subtask template7 

As definitions are always based on a template (created and maintained by 
the CDE), we decided to present both the information from the template 

                                                      
7 “Fonceren” is a kind of Subtask whereby the inside of a baking form is coated with dough as 

a preparatory process of the baking itself. The inner blue boxes represent the specialized 
types of the more general, outer white template types. For instance, the quality demands 
(“kwaliteitseis”) for the resulting (“resulteert_in”) Coated baking form 
(“Beklede_Bakvorm”) are the qualities Equal thickness (“Gelijke_Dikte”) and No 
airbubbles (“Geen_Luchtbellen”). 
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(outer white boxes) and that from the definition-in-edit (inner dark-grey 
boxes). We found that this visual clue contributed significantly to 
understanding the concepts used in the definition (see Figure 10-4). 

3.1.3 Knowledge Engineer  (KE) 

The Knowledge Engineer assists the other DOGMA-MESS actors by 
tutoring them in the system. Furthermore, he analyses the elicited knowledge 
artefacts, which are not yet full-fledged ontological commitments. For 
meaning analysis, the Knowledge Engineer has two main tools at his 
disposal: the DOGMA-MESS8 Web front-end we described above, and the 
DOGMA Studio Workbench9, which is a plug-in-based architecture (see 
section 3.4).  

Searching graphs: Using the Web front-end, the KE constructs a query 
graph (which is analogous to defining a template), which is then matched 
against all available knowledge artefacts (including type hierarchies, 
templates and definitions) in the ontology server. This functionality allows 
the KE to detect patterns. For instance, a query could search for all subtask 
definitions that are performed by a baker using an oven. 

Meaning analysis: For further meaning analysis, the KE can rely on the 
DOGMA workbench, more particularly the T-Lex tool. The main view of 
this tool is depicted in Figure 10-5. The left pane (LexonBase Explorer) 
shows an extensive list of contexts identifiers, which represent the multiple 
contextualisations. The KE selects one of these contexts in order to zoom in 
on the knowledge collected inside. The tree below the context displays all 
terms present in the context. The bottom right pane (Lexons) lists all lexons 
in the currently selected context. The top right pane (T-Lex Lexon Base 
Browser) shows the NORM-tree browsing approach (Trog et al., 2006). The 
KE selects one of the concepts in the context as the root of the tree. Starting 
from that root, he can browse further by exploring all the relations 
connected. The advantage of this approach is the constant availability of 
local context: all relations connected to the concept in focus are always 
nearby and in view. Concepts can be displayed more than once, but they are 
marked in grey to identify them as duplicates. 

Furthermore, the KE can also axiomatise definitions by adding semantic 
constraints (e.g., uniqueness and value constraints) to the paths present in the 
NORM-tree. 

                                                      
8 http://www.starlab.vub.ac.be/website/dogma-mess 
9 http://www.starlab.vub.ac.be/website/dogmastudio 
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Figure 10-5. T-Lex, in-depth semantic functionality for the KE 

3.2 Reusing existing consensus 

In this section, we show how the DOGMA-MESS system handles 
previously existing consensus, and we take a look at the estimated cost of 
using the system. 

3.2.1 Reusing consensus 

By means of upward spiral knowledge creation, DOGMA-MESS aims to 
enhance the potential for relevant interorganisational knowledge creation in 
an efficient way through incentive templates. Consensus reuse is an essential 
criterion in order to realise the scalability of ontology engineering. We can 
define reuse as  

the repeated use of an artefact in different situations, with or without 
making adaptations to it. 
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We discuss three prominent ways of knowledge reuse in DOGMA-
MESS, viz. reuse of the lexon base, reuse of an existing upper ontology, and 
reuse of existing organisational schemas and organisational knowledge.  

From the lexon base: In DOGMA, lexons are stored in an extensive 
lexon base, which is holds intuitive plausible conceptualisations of a domain. 
The lexon base is intended as a large collection of highly reusable pieces of 
knowledge (the lexons). These can be used (and reused) in any ontology and 
in any commitment to an ontology.  These lexons can be collected from any 
input source, such as existing text documents or standards. 

From the upper ontology: In the Meta-Ontology (MO) we identify two 
cases of reuse of existing consensus, viz. metaconcept types, and canonical 
relations. The MO contains domain-independent concepts, and is used to 
assist the CDE in a structural way of thinking about his type hierarchy and 
templates. The KE can use these to easily merge and map all collected 
concepts to external resources, such as Cyc’s Upper Ontology (Lenat and 
Guha, 1990) and SUMO (Niles and Pease, 2001). At this stage, we opted for 
an extremely thin layer, containing only five types, namely “T” (the absurd 
type), with four subtypes “Actor,” “Object,” “Process” and “Quality.” We 
found that for our case these four types are sufficient to guide the CDE. The 
canonical relations (e.g., agent of and instrument of) are based on those that 
Sowa (Sowa, 1999) identified in Fillmore’s case grammar (Fillmore, 1968). 
In the Dutch bakery use case, we provided the CDE with five canonical 
relations (consists of, instrument of, quality of, results in, agent of). He 
translated these to his own (Dutch) terms and used only these translations in 
his templates. This approach forced (1) the KE to determine a relevant set of 
relations, (2) the CDE to construct his templates appropriately, and (3) all 
DEs to add their knowledge through semantics in concepts, instead of in a 
multitude of ad-hoc and ill-defined relations. 

We found that it is very important to provide clear metatypes and 
relations. In the use case, we provided the CDE with a clear and well-formed 
natural language gloss and a few examples (instances) as well. Both glosses 
(Jarrar 2005; Jarrar 2006) and examples (Nijssen and Halpin 1989) have 
been proven to increase understanding for both KEs and (C)DEs.  

From organisational knowledge: Second is the elicitation of 
organisational knowledge. Much of the existing consensus in the domain of 
our use case can only be found as tacit knowledge (Nonaka and Takeuchi, 
1995). This will hold true in other domains as well. DOGMA-MESS 
provides the DEs with a structured approach to capture at least a relevant 
part of their tacit knowledge, and convert it into a formal (and thus reusable) 
representation. DOGMA-MESS can then identify how much of this 
knowledge is already agreed upon. Supported by the system (e.g., a 
discussion agenda of the most relevant differences), the DEs, supported by 
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the CDE and if necessary the KE, can then perform meaning negotiation in 
order to reach consensus, where consensus is possible and necessary. The 
CDE also has to rely on his knowledge and experience, and try to get a 
mental view on the consensus in the sea of tacit knowledge in order to 
construct the appropriate templates and type hierarchy. In our use case, the 
initial UCO type hierarchy was actually reused from another nation-wide 
project in the Dutch bakery domain: Flexbase10. To our knowledge, there 
was no other (inter)national standard or shared resource available that could 
serve in our Dutch bakery use case. Through iteration and evolution of the 
templates, we predict that they will evolve into useful knowledge patterns 
for the domain. Under traditional circumstances, artefacts that are 
constructed as highly reusable tend to be difficult to actually use because of 
their generic level. We foresee that the evolved patterns could possible be 
used in other domains as well, either as a valid knowledge pattern (e.g., the 
subtask pattern might serve as a template in other domains as well), or as a 
good source of inspiration (e.g. bakery experts claim that bakery much 
resembles other process industries, such as the chemical industry, in many 
ways. Parts of the process patterns, for example, might be good starting 
points for domain ontologies of these other industries.) 

3.2.2 Cost 

It is difficult to provide exact details about cost or time spent in our 
approach. We did not yet perform measurements related to this issue. Based 
on user sessions held in the use case, we estimate that in general DEs can 
create the first version of a definition in about 10 to 15 minutes. This 
includes the accompanying changes they make to their type hierarchy as 
well. The templates are more difficult, as they require more abstract 
thinking, but this is offset by far fewer templates than domain definitions 
being necessary. The templates used in the Dutch bakery domain (five 
different ones) were crafted in an extensive afternoon session, and required a 
second such session to complete them. They will need several elicitation 
iterations before they evolve into actual knowledge patterns.  

The process of negotiation in order to reach a common agreement is 
difficult to estimate, as it depends on a number of variables (the number of 
differences, the complexity of the differences, the people involved, etc.). We 
found that it is best to keep the discussion fixed on one difference at the 
time, and limited in time (e.g. by using a timer and an objective mediator). 
Any disagreement after that period must then first be solved at the 
organisational level, not at the common level. This disagreement can then be 
tackled in a next version (using an updated type hierarchy and templates).  
                                                      
10 http://www.flexbase.nl/ 
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The structured approach of DOGMA-MESS assists the (C)DEs in how to 
define their conceptualisations. It is not necessary to introduce a separate 
alignment process alongside the articulation, as any definition is inherently 
aligned with the template. The KE can perform mapping at the MO level and 
merging of OOs is done in the LCO through meaning negotiation. 

3.3 Ontology evolution  

The Dutch bakery vocational domain in our use case is only dynamic to a 
lesser degree. It does change, but not as fast as for instance the IT domain. 
On the other hand, many parties (e.g. educational institutes) are involved 
with a vested interest in their own organizational definitions, so many 
versions can be necessary before stable definitions have been obtained.  
Thus, in general it is very important to make sure that maintenance (and thus 
evolution) is manageable. This is a constraint for any system or 
methodology, and it should be a constraint from the start – not simply when 
evolution is noticed for the first time. We acknowledge that evolution is very 
important and continuously present in our (and any other) domain, especially 
when the domain is shaped (and formally described) by an 
interorganisational community of users. 

In collaborative ontology engineering, multiple stakeholders have 
multiple views on multiple ontologies. Hence, a viable methodology requires 
supporting domain experts in gradually building and managing increasingly 
complex versions of ontological elements and their converging and 
diverging interrelationships. DOGMA-MESS adopts this principle by 
implementing the upward spiral model we discussed in Chapter 5. This 
naturally requires the appropriate versioning support. In this section, we 
discuss the evolution support in DOGMA-MESS in terms of the different 
activities from the single user and collaborative ontology evolution process 
model in Chapter 5. 

Change representation: In (De Leenheer et al., 2007), we define a non-
exhaustive list of change operators, hence a change (request) is represented 
by a sequence of change operations. Each user is granted change permissions 
based on his role profile, as we explained in De Leenheer and Meersman 
(2007). A user can also request a change to other artefacts, but these have to 
be validated by the authorised person. For instance, a domain expert is only 
responsible for an organisational definition that specialises the template 
provided by the CDE. However, at any time, he can submit and argue for a 
template change request to the CDE, based on his experiences with (trying 
to) specialise the template. 

Prioritisation and change request types: The many dependencies 
between artefacts in the ontology require dependent artefacts to be updated 
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in view of the changes in the artefacts they depend on. A prioritisation 
scheme for mapping the change requests, in order to decide which change 
should be implemented first, is based on the role of the change requester. For 
instance, the specialisation dependency states that an organisational 
definition (e.g., “Fonceren”) must at all times be a specialisation of its 
template (e.g., subtask). A change (on request) made by the CDE in a 
template has priority over the specialisation by the DE. Hence, whenever a 
template changes, all the DEs are notified (push-based) that they have to 
change their specialisation dependent organisational definitions (in 
response).  

Impact analysis: Currently, the impact of a change is analysed simply by 
counting the dependent artefacts using the context dependencies, and the 
current prioritisation schemes. Even if a change has severe consequences for 
some dependent artefact in the ontology, the priority of the change will 
influence this decision. We plan to extend this functionality. 

Versioning support: In DOGMA-MESS, all versions of the ontologies 
are persistently stored in DOGMA Server, and tagged with appropriate meta-
data for identification, and for describing the how, who, and when of the 
version. We learned that it is very important to provide (and encourage) the 
end-user with commenting functionality. A good description of why a new 
version was created avoids future insight questions, such as the familiar 
‘Why did we/they do this again?’ Even if the new version is automatically 
generated (e.g., an automatically updated definition caused by a change in 
the template and the associated specialisation dependency), it is advisable to 
include a pre-defined system comment to assist the (C)DEs.  

Through logging the change information (the dependencies and the 
operators), we avoided the difficult problem of having to induce them 
between versions. This kind of structured information allows highly granular 
version comparison and merging functionalities. At the time of the 
CODRIVE use case, comparison and merging functionalities for these 
processes were not yet available. Currently, we are extending the DOGMA-
MESS interfaces in other real-world case studies to incorporate this 
convergence support.  

An important experience was the difficulty that the DEs reported during 
version iteration. Our initial idea was to start a version iteration with the 
UCO type hierarchy and templates, and that these would be blocked during 
the entire iteration. They could only be updated in the next iteration. This 
resulted in the complaint that the DEs were not satisfied with certain parts of 
the UCO type hierarchy, but that they had to wait until the end of the version 
before something could be done. While this discrete versioning setup, 
including a negotiation phase at the end of every version in order to resolve 
the differences, was our goal, we concluded that it is important to provide 
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more freedom for the (C)DEs. So, while the process itself is globally discrete 
(version iterations), the micro-processes (updating a definition, change to the 
UCO type hierarchy, etc.) should be perceived as continuous by the (C)DEs 
in order to obtain a stronger feeling of freedom. 

3.4 Tool support 

The DOGMA-MESS approach requires a lot of system support. Some of 
the necessary tools were available; others were built or adapted to fit in the 
scope of the use case. In the following subsections we present the used tools, 
and our lessons learnt.  

3.4.1 Web application 

For the general workflow of DOGMA-MESS, we opted for a zero-install 
approach in the form of a Web-based application (see figures 2, 3 and 4 for 
some examples). While this kind of platform used to provide rather limited 
client-side smoothness, the current trends with JavaScript (such as AJAX11) 
may allow a richer end-user experience. The zero-install was a necessity for 
us, as in many cases (C)DEs are limited in installation possibilities 
concerning their on-the-job computer systems. The Web-based approach 
avoids installation trouble and paves the way for low-complexity ontology 
engineering. In this Web-based application, we identified the different user 
roles (KE, CDE and DE) with a clear and continuously present icon in order 
to enhance recognition.  

Our main reason to build this tool (supporting the DOGMA-MESS 
methodology) was the fact that there was no other proper workflow support 
available. However, in order to avoid too much development work, we 
decided to link the Web application with several other tools (for input, 
output, analysis and reasoning) to obtain the necessary functionalities. 

3.4.2 Input 

We initially chose the conceptual graph editor CharGer (Delugach, 2001) 
as an input tool for the CDE. Using this tool, the CDE could build the UCO 
type hierarchy and the necessary templates, and then upload them into 
DOGMA-MESS. At that time, CharGer did not have a proper layout 
algorithm integrated. It quickly became clear that the richly populated UCO 
type hierarchy was beyond proper manual management as Charger’s visual 
representation looked like a jungle of concepts and line crossings. To solve 

                                                      
11 http://en.wikipedia.org/wiki/AJAX_(programming) 
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this, we opted for an indented text format, in which the hierarchy depth is 
indicated by the indentation. Although this is a rather simple approach, it 
proved efficient and easy to use. As any text editor was sufficient for editing, 
this method was an advantage concerning client-side requirements as well. 
In the end, we incorporated this approach in the Web application. 

3.4.3 Output 

As the figures used in this chapter demonstrate, we also included a 
visualisation component in the Web application. The layout functionalities 
are provided by AT&T’s GraphViz12, a tool that provides several algorithms 
with numerous configuration parameters for graph lay outing. Thanks to the 
domain-specific terminology in the graphs, they are easily understood by 
(C)DEs. They also provide an immediate overview of the knowledge they 
represent, even for people who are not accustomed to working with graphs. 
In our use case, we did not encounter any direct opposition or difficulties in 
using them. However, we are also considering a more traditional (and 
omnipresent) spreadsheet-like approach as well as a natural language text 
representation as alternatives in the system. These will result in an even 
lower complexity, and a quicker way of capturing knowledge. We will keep 
the graph visualisation in future versions (because of its clarity and overview 
advantages), but we will add hide/show functionalities in order to provide 
(C)DEs with the freedom of choice. 

3.4.4 Advanced 

For the more advanced tasks of the Knowledge Engineer, there is a 
plethora of tools available (Gómez-Pérez et al., 2003), each one of them with 
its own strong advantages and theoretical backgrounds. Because of the 
DOGMA foundation of DOGMA-MESS, we incorporated the DOGMA 
Studio Workbench (see Figure 10-5). It provides the KE with advanced 
contextual browsing facilities (described in section 3.1.3), as well as support 
for detailed semantic constraints. It is based on the Eclipse Rich Client 
Platform13, which provides a flexible plug-in architecture. A very important 
aspect is interoperability and grounding into formats and standards used by 
others. The DOGMA Studio Workbench can perform conversion to and 
from external formats, such as RDF (Miller and Manola, 2004) and OWL 
(van Harmelen and McGuinness, 2004) in order to provide proper 
operationalisation. 

                                                      
12 http://www.graphviz.org/ 
13 http://wiki.eclipse.org/index.php/Rich_Client_Platform 
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3.5 Storage and retrieval 

The DOGMA-MESS methodology we applied in our use case imposes a 
number of requirements on the back-end. A first requirement is high 
scalability, as the method was developed with a large community of users in 
mind. A second requirement is the need for multi-synchronous collaborative 
editing, where multiple users can perform their part synchronously. The third 
(and last) requirement concerns the reasoner, which must be capable of 
handling all sorts of context dependencies. 

DOGMA-MESS has been developed as an Apache Tapestry14 Web 
application. It connects to the DOGMA Studio Server, which is a JBoss15 
J2EE application, backed by a PostgreSQL16 relational database. The 
database hosts the relational model of the DOGMA framework, and the 
J2EE application layer provides the functional model. As one of the 
advantages of DOGMA is its scalability (Spyns et al 2002), we had to 
provide it with sufficient scalability support on the technical side. Relational 
databases have a long-proven track record to support this. Other storage 
approaches, such as XML databases and triple stores are currently growing 
in popularity and have proven to withstand large data sets as well (Lee 
2004). At this point however, we chose the more traditional approach 
because of its longer history of scalability. The JBoss Application Server is 
widely used in industrial applications, and as such it has proven itself. 
Thanks to the J2EE aspect of the application, it is relatively easy to connect 
to the server (e.g., via Web services) and make use of the data. DOGMA-
MESS stores and retrieves all its data using the DOGMA Studio Server and 
the DOGMA Studio Workbench provides KE access to the available content. 

A very important aspect of using a client/server architecture is the 
scalable support for collaborative environments. Via this approach, we can 
avoid the problem of different users each having a different version of the 
ontology in some XML format. All content is captured on the server, 
properly versioned, and thoroughly described in terms of context and other 
dependencies. At all times, the server monitors all changes and updates in 
order to detect possible conflicts. 

As a reasoner, we use the Prolog+CG engine17. This reasoner provides all 
the potential of Horn clause logic available in Prolog, and has incorporated 
conceptual graphs as first class citizens. We use this reasoner to validate the 
context dependencies using conceptual graphs operation. For instance, to 
check whether a specialisation is still in line with its template, we call 

                                                      
14 http://tapestry.apache.org/ 
15 http://labs.jboss.com/portal/jbossas 
16 http://www.postgresql.org/ 
17 http://prologpluscg.sourceforge.net/ 
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Prolog+CG and use its conceptual graph’s projection operation. There are 
many other conceptual graph reasoners available, but we chose Prolog+CG 
(Christiaens and de Moor 2006) because (1) it allows easy integration in 
DOGMA Studio because of its Java implementation, (2) it includes Prolog, 
which provides a lot of logic processing power and (3) it includes the 
necessary conceptual graph operators (e.g., projection). In the use case setup, 
we had a single Prolog+CG engine, which required the relevant data in-
memory. We did not experience performance issues, but we foresee that 
larger data sets might cause problems in large comparison operations (e.g., 
matching of a query against all graphs in the server). These can be tackled by 
using more than one engine (on different physical servers).  

We tried to use as much open-source software as possible, both for legal 
reasons as well as integration aspects. In the case of Prolog+CG, this open-
source aspect and good communication with the maintainer of the software 
resulted in an improved and faster implementation of the reasoner, which 
was a benefit for both parties. 

4. CONCLUSION 

In this chapter we presented our experiences in the CODRIVE Dutch 
bakery domain. We described the additional difficulties that the 
interorganisational setting brings, such as the capturing of tacit knowledge, 
meaning divergence and context dependencies, and the need for co-evolution 
with the community of practice. We presented DOGMA-MESS, our answer 
to dealing with these kinds of complexity. We then described our 
experiences with this approach, related to the theoretical chapters in this 
book. These experiences show that it is difficult, but feasible to empower 
non-knowledge engineers in ontology management. A very important aspect 
is evolution, which needs to be thoroughly assisted by proper system 
support, especially in interorganisational settings, where the ontology needs 
to co-evolve with its community of practice.  

We can conclude that there are two benefits to involving the community 
stakeholders in the ontology engineering: (1) the collected input represents 
correct and accepted knowledge and (2) the input results from and creates 
involvement and ownership of all stakeholders. An ontology that is created 
by a small group of knowledge engineers in splendid isolation and then 
forced into reality and implementation has little chance of acceptance. 
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